Gentamicin is one of the commonly used antibiotics in small animal practice in Nigeria. Fake and substandard drugs are responsible for high cost in both economic terms and lives lost. For decades, Nigeria has been flo...Gentamicin is one of the commonly used antibiotics in small animal practice in Nigeria. Fake and substandard drugs are responsible for high cost in both economic terms and lives lost. For decades, Nigeria has been flooded by counterfeit and poor-quality medicines. Because of the variations in gentamicin C components in different formulations and the effect of this on its efficacy and toxicity, this study was designed to evaluate the percentage of each of the major components of gentamicin C in some injectable gentamicin sulphate generics commonly used in small animal practice in Nigeria. Of the 22 multisource generics of injectable gentamicin sulphate samples analyzed for percentage content of gentamicin C major components using USP HPLC (United States Pharmacopoeia high performance liquid chromatography) method, 95.5% (21 ) met the USP specification. This suggests that there is a significant improvement in the monitoring of quality of drugs marketed in Nigeria, including gentamicin sulphate. Nevertheless, considering the propensity of the manufacturers adjusting their manufacturing processes following product's registration by the regulatory body, there is still the need for regular surveillance of drug products by batches to ensure their efficacy and safety.展开更多
To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capabl...To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.展开更多
In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitud...In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided b...With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided by synchronous generators.To address this critical issue,Virtual Synchronous Generator(VSG)technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators.To enhance the operational efficiency of virtual synchronous generators(VSGs),this study employs smallsignal modeling analysis,root locus methods,and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency stability and power output during transient processes.Based on these analyses,an adaptive control strategy is proposed:increasing the virtual inertia when the rotor angular velocity undergoes rapid changes,while strengthening the damping coefficient when the speed deviation exceeds a certain threshold to suppress angular velocity oscillations.To validate the effectiveness of the proposed method,a grid-connected VSG simulation platform was developed inMATLAB/Simulink.Comparative simulations demonstrate that the proposed adaptive control strategy outperforms conventional VSGmethods by significantly reducing grid frequency deviations and shortening active power response time during active power command changes and load disturbances.This approach enhances microgrid stability and dynamic performance,confirming its viability for renewable-dominant power systems.Future work should focus on experimental validation and real-world parameter optimization,while further exploring the strategy’s effectiveness in improvingVSG low-voltage ride-through(LVRT)capability and power-sharing applications in multi-parallel configurations.展开更多
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex...Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.展开更多
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of...Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d...Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.展开更多
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru...Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.展开更多
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua...Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.展开更多
Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been s...Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.展开更多
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great...The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.展开更多
As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impeda...As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system.展开更多
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ...Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.展开更多
BACKGROUND Kidney and liver transplantation are two sub-specialized medical disciplines,with transplant professionals spending decades in training.While artificial intelligencebased(AI-based)tools could potentially as...BACKGROUND Kidney and liver transplantation are two sub-specialized medical disciplines,with transplant professionals spending decades in training.While artificial intelligencebased(AI-based)tools could potentially assist in everyday clinical practice,comparative assessment of their effectiveness in clinical decision-making remains limited.AIM To compare the use of ChatGPT and GPT-4 as potential tools in AI-assisted clinical practice in these challenging disciplines.METHODS In total,400 different questions tested ChatGPT’s/GPT-4 knowledge and decision-making capacity in various renal and liver transplantation concepts.Specifically,294 multiple-choice questions were derived from open-access sources,63 questions were derived from published open-access case reports,and 43 from unpublished cases of patients treated at our department.The evaluation covered a plethora of topics,including clinical predictors,treatment options,and diagnostic criteria,among others.RESULTS ChatGPT correctly answered 50.3%of the 294 multiple-choice questions,while GPT-4 demonstrated a higher performance,answering 70.7%of questions(P<0.001).Regarding the 63 questions from published cases,ChatGPT achieved an agreement rate of 50.79%and partial agreement of 17.46%,while GPT-4 demonstrated an agreement rate of 80.95%and partial agreement of 9.52%(P=0.01).Regarding the 43 questions from unpublished cases,ChatGPT demonstrated an agreement rate of 53.49%and partial agreement of 23.26%,while GPT-4 demonstrated an agreement rate of 72.09%and partial agreement of 6.98%(P=0.004).When factoring by the nature of the task for all cases,notably,GPT-4 demonstrated outstanding performance,providing a differential diagnosis that included the final diagnosis in 90%of the cases(P=0.008),and successfully predicting the prognosis of the patient in 100%of related questions(P<0.001).CONCLUSION GPT-4 consistently provided more accurate and reliable clinical recommendations with higher percentages of full agreements both in renal and liver transplantation compared with ChatGPT.Our findings support the potential utility of AI models like ChatGPT and GPT-4 in AI-assisted clinical practice as sources of accurate,individualized medical information and facilitating decision-making.The progression and refinement of such AI-based tools could reshape the future of clinical practice,making their early adoption and adaptation by physicians a necessity.展开更多
As energy demands continue to rise in modern society,the development of high-performance lithium-ion batteries(LIBs)has become crucial.However,traditional research methods of material science face challenges such as l...As energy demands continue to rise in modern society,the development of high-performance lithium-ion batteries(LIBs)has become crucial.However,traditional research methods of material science face challenges such as lengthy timelines and complex processes.In recent years,the integration of machine learning(ML)in LIB materials,including electrolytes,solid-state electrolytes,and electrodes,has yielded remarkable achievements.This comprehensive review explores the latest applications of ML in predicting LIB material performance,covering the core principles and recent advancements in three key inverse material design strategies:high-throughput virtual screening,global optimization,and generative models.These strategies have played a pivotal role in fostering LIB material innovations.Meanwhile,the paper briefly discusses the challenges associated with applying ML to materials research and offers insights and directions for future research.展开更多
Hydrodynamic cavitation,as an efficient technique applied in many physical and chemical treatment methods,has been widely used by various industries and in several technological fields.Relevant generators,designed wit...Hydrodynamic cavitation,as an efficient technique applied in many physical and chemical treatment methods,has been widely used by various industries and in several technological fields.Relevant generators,designed with specific structures and parameters,can produce cavitation effects,thereby enabling effective treatment and reasonable transformation of substances.This paper reviews the design principles,performance,and practical applications associated with different types of cavitation generators,aiming to provide theoretical support for the optimization of these systems.It systematically analyzes the underpinning mechanisms and the various factors influencing the cavitation phenomena,also conducting a comparative analysis of the performance of different types of generators.Specific applications dealing with wastewater treatment,chemical reaction acceleration,and other fields are discussed together with the advantages,disadvantages,and applicability of each type of cavitation generator.We also explore research progress in areas such as cavitation stability,energy efficiency,and equipment design upgrades.The study concludes by forecasting the application prospects of intelligent design and computational fluid dynamics(CFD)in optimizing and advancing cavitation generators.It proposes new ideas for the further development of cavitation technology and highlights directions for its widespread future application.展开更多
Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involv...Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act ...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors.展开更多
文摘Gentamicin is one of the commonly used antibiotics in small animal practice in Nigeria. Fake and substandard drugs are responsible for high cost in both economic terms and lives lost. For decades, Nigeria has been flooded by counterfeit and poor-quality medicines. Because of the variations in gentamicin C components in different formulations and the effect of this on its efficacy and toxicity, this study was designed to evaluate the percentage of each of the major components of gentamicin C in some injectable gentamicin sulphate generics commonly used in small animal practice in Nigeria. Of the 22 multisource generics of injectable gentamicin sulphate samples analyzed for percentage content of gentamicin C major components using USP HPLC (United States Pharmacopoeia high performance liquid chromatography) method, 95.5% (21 ) met the USP specification. This suggests that there is a significant improvement in the monitoring of quality of drugs marketed in Nigeria, including gentamicin sulphate. Nevertheless, considering the propensity of the manufacturers adjusting their manufacturing processes following product's registration by the regulatory body, there is still the need for regular surveillance of drug products by batches to ensure their efficacy and safety.
基金funded by the Science and Technology Projects of State Grid Corporation of China(Project No.J2024136).
文摘To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603401)National Natural Science Foundation of China(Nos.12035010 and 12342501)+1 种基金Beijing Outstanding Young Scientist Program(No.JWZQ20240101006)the Tsinghua University Dushi Program.
文摘In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金financially supported by the Talent Initiation Fund of Wuxi University(550220008).
文摘With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided by synchronous generators.To address this critical issue,Virtual Synchronous Generator(VSG)technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators.To enhance the operational efficiency of virtual synchronous generators(VSGs),this study employs smallsignal modeling analysis,root locus methods,and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency stability and power output during transient processes.Based on these analyses,an adaptive control strategy is proposed:increasing the virtual inertia when the rotor angular velocity undergoes rapid changes,while strengthening the damping coefficient when the speed deviation exceeds a certain threshold to suppress angular velocity oscillations.To validate the effectiveness of the proposed method,a grid-connected VSG simulation platform was developed inMATLAB/Simulink.Comparative simulations demonstrate that the proposed adaptive control strategy outperforms conventional VSGmethods by significantly reducing grid frequency deviations and shortening active power response time during active power command changes and load disturbances.This approach enhances microgrid stability and dynamic performance,confirming its viability for renewable-dominant power systems.Future work should focus on experimental validation and real-world parameter optimization,while further exploring the strategy’s effectiveness in improvingVSG low-voltage ride-through(LVRT)capability and power-sharing applications in multi-parallel configurations.
基金This study was supported by:Inner Mongolia Academy of Forestry Sciences Open Research Project(Grant No.KF2024MS03)The Project to Improve the Scientific Research Capacity of the Inner Mongolia Academy of Forestry Sciences(Grant No.2024NLTS04)The Innovation and Entrepreneurship Training Program for Undergraduates of Beijing Forestry University(Grant No.X202410022268).
文摘Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.
基金supported by the Chung-Ang University Research Grants in 2023.Alsothe work is supported by the ELLIIT Excellence Center at Linköping–Lund in Information Technology in Sweden.
文摘Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
基金The work described in this paper was fully supported by a grant from Hong Kong Metropolitan University(RIF/2021/05).
文摘Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01295).
文摘Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.
基金supported by National Natural Science Foundation of China(62376219 and 62006194)Foundational Research Project in Specialized Discipline(Grant No.G2024WD0146)Faculty Construction Project(Grant No.24GH0201148).
文摘Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.
基金National Natural Science Foundation of China(Nos.4210144242394063).
文摘Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.
基金supported and financed by Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (No.2024yjrc96)Anhui Provincial University Excellent Research and Innovation Team Support Project (No.2022AH010053)+2 种基金National Key Research and Development Program of China (Nos.2023YFC2907602 and 2022YFF1303302)Anhui Provincial Major Science and Technology Project (No.202203a07020011)Open Foundation of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining (No.EC2023020)。
文摘The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.
基金supported by theMajor Science and Technology Projects of China Southern Power Grid(Grant number CGYKJXM20210328).
文摘As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system.
基金supported by the Yonsei University graduate school Department of Integrative Biotechnology.
文摘Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.
文摘BACKGROUND Kidney and liver transplantation are two sub-specialized medical disciplines,with transplant professionals spending decades in training.While artificial intelligencebased(AI-based)tools could potentially assist in everyday clinical practice,comparative assessment of their effectiveness in clinical decision-making remains limited.AIM To compare the use of ChatGPT and GPT-4 as potential tools in AI-assisted clinical practice in these challenging disciplines.METHODS In total,400 different questions tested ChatGPT’s/GPT-4 knowledge and decision-making capacity in various renal and liver transplantation concepts.Specifically,294 multiple-choice questions were derived from open-access sources,63 questions were derived from published open-access case reports,and 43 from unpublished cases of patients treated at our department.The evaluation covered a plethora of topics,including clinical predictors,treatment options,and diagnostic criteria,among others.RESULTS ChatGPT correctly answered 50.3%of the 294 multiple-choice questions,while GPT-4 demonstrated a higher performance,answering 70.7%of questions(P<0.001).Regarding the 63 questions from published cases,ChatGPT achieved an agreement rate of 50.79%and partial agreement of 17.46%,while GPT-4 demonstrated an agreement rate of 80.95%and partial agreement of 9.52%(P=0.01).Regarding the 43 questions from unpublished cases,ChatGPT demonstrated an agreement rate of 53.49%and partial agreement of 23.26%,while GPT-4 demonstrated an agreement rate of 72.09%and partial agreement of 6.98%(P=0.004).When factoring by the nature of the task for all cases,notably,GPT-4 demonstrated outstanding performance,providing a differential diagnosis that included the final diagnosis in 90%of the cases(P=0.008),and successfully predicting the prognosis of the patient in 100%of related questions(P<0.001).CONCLUSION GPT-4 consistently provided more accurate and reliable clinical recommendations with higher percentages of full agreements both in renal and liver transplantation compared with ChatGPT.Our findings support the potential utility of AI models like ChatGPT and GPT-4 in AI-assisted clinical practice as sources of accurate,individualized medical information and facilitating decision-making.The progression and refinement of such AI-based tools could reshape the future of clinical practice,making their early adoption and adaptation by physicians a necessity.
基金supported by the National Natural Science Foundation of China(Grant Nos.22225801,W2441009,22408228)。
文摘As energy demands continue to rise in modern society,the development of high-performance lithium-ion batteries(LIBs)has become crucial.However,traditional research methods of material science face challenges such as lengthy timelines and complex processes.In recent years,the integration of machine learning(ML)in LIB materials,including electrolytes,solid-state electrolytes,and electrodes,has yielded remarkable achievements.This comprehensive review explores the latest applications of ML in predicting LIB material performance,covering the core principles and recent advancements in three key inverse material design strategies:high-throughput virtual screening,global optimization,and generative models.These strategies have played a pivotal role in fostering LIB material innovations.Meanwhile,the paper briefly discusses the challenges associated with applying ML to materials research and offers insights and directions for future research.
文摘Hydrodynamic cavitation,as an efficient technique applied in many physical and chemical treatment methods,has been widely used by various industries and in several technological fields.Relevant generators,designed with specific structures and parameters,can produce cavitation effects,thereby enabling effective treatment and reasonable transformation of substances.This paper reviews the design principles,performance,and practical applications associated with different types of cavitation generators,aiming to provide theoretical support for the optimization of these systems.It systematically analyzes the underpinning mechanisms and the various factors influencing the cavitation phenomena,also conducting a comparative analysis of the performance of different types of generators.Specific applications dealing with wastewater treatment,chemical reaction acceleration,and other fields are discussed together with the advantages,disadvantages,and applicability of each type of cavitation generator.We also explore research progress in areas such as cavitation stability,energy efficiency,and equipment design upgrades.The study concludes by forecasting the application prospects of intelligent design and computational fluid dynamics(CFD)in optimizing and advancing cavitation generators.It proposes new ideas for the further development of cavitation technology and highlights directions for its widespread future application.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222508 and 52335011)。
文摘Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs.
基金supported by Interdisciplinary Innova-tion Project of“Bioarchaeology Laboratory”of Jilin University,China,and“MedicineþX”Interdisciplinary Innovation Team of Norman Bethune Health Science Center of Jilin University,China(Grant No.:2022JBGS05).
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors.