期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO
1
作者 TANG Chenyue LI Zeshen +1 位作者 CHEN Zihan Howard H.YANG 《ZTE Communications》 2025年第1期53-62,共10页
The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ... The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices. 展开更多
关键词 activity detection channel estimation inverse problem score-based generative model massive MIMO
在线阅读 下载PDF
Noise suppression in photon-counting computed tomography using unsupervised Poisson flow generative models
2
作者 Dennis Hein Staffan Holmin +4 位作者 Timothy Szczykutowicz Jonathan S.Maltz Mats Danielsson Ge Wang Mats Persson 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期98-111,共14页
Deep learning(DL)has proven to be important for computed tomography(CT)image denoising.However,such models are usually trained under supervision,requiring paired data that may be difficult to obtain in practice.Diffus... Deep learning(DL)has proven to be important for computed tomography(CT)image denoising.However,such models are usually trained under supervision,requiring paired data that may be difficult to obtain in practice.Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling.In particular,using the estimated unconditional score function of the prior distribution,obtained via unsupervised learning,one can sample from the desired posterior via hijacking and regularization.However,due to the iterative solvers used,the number of function evaluations(NFE)required may be orders of magnitudes larger than for single-step samplers.In this paper,we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models(PFGM)++.By hijacking and regularizing the sampling process we obtain a single-step sampler,that is NFE=1.Our proposed method incorporates posterior sampling using diffusion models as a special case.We demonstrate that the added robustness afforded by the PFGM++framework yields significant performance gains.Our results indicate competitive performance compared to popular supervised,including state-of-the-art diffusion-style models with NFE=1(consistency models),unsupervised,and non-DL-based image denoising techniques,on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare. 展开更多
关键词 Deep learning Photon-counting CT DENOISING Diffusion models Poisson flow generative models
在线阅读 下载PDF
An inverse design method for supercritical airfoil based on conditional generative models 被引量:11
3
作者 Jing WANG Runze LI +4 位作者 Cheng HE Haixin CHEN Ran CHENG Chen ZHAI Miao ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期62-74,共13页
Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learnin... Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learning.A Conditional Variational Auto Encoder(CVAE)and an integrated generative network CVAE-GAN that combines the CVAE with the Wasserstein Generative Adversarial Networks(WGAN),are conducted as generative models.They are used to generate target wall Mach distributions for the inverse design that matches specified features,such as locations of suction peak,shock and aft loading.Qualitative and quantitative results show that both adopted generative models can generate diverse and realistic wall Mach number distributions satisfying the given features.The CVAE-GAN model outperforms the CVAE model and achieves better reconstruction accuracies for all the samples in the dataset.Furthermore,a deep neural network for nonlinear mapping is adopted to obtain the airfoil shape corresponding to the target wall Mach number distribution.The performances of the designed deep neural network are fully demonstrated and a smoothness measurement is proposed to quantify small oscillations in the airfoil surface,proving the authenticity and accuracy of the generated airfoil shapes. 展开更多
关键词 Conditional Variational AutoEncoder(CVAE) Deep learning generative Adversarial Networks(GAN) generative models Inverse design Supercritical airfoil
原文传递
Coverless Steganography for Digital Images Based on a Generative Model 被引量:5
4
作者 Xintao Duan Haoxian Song +1 位作者 Chuan Qin Muhammad Khurram Khan 《Computers, Materials & Continua》 SCIE EI 2018年第6期483-493,共11页
In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independ... In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independent image different from the secret image.The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image.Thus,we only need to transmit the meaning-normal image which is not related to the secret image,and we can achieve the same effect as the transmission of the secret image.This is the first time to propose the coverless image information steganographic scheme based on generative model,compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method,therefore,can effectively resist steganalysis tools.Experimental results show that our scheme has high capacity,security and reliability. 展开更多
关键词 generative model coverless image steganography STEGANALYSIS steganographic capacity security.
在线阅读 下载PDF
Designing natural product-like virtual libraries using deep molecule generative models 被引量:1
5
作者 Yibo Li Xin Zhou +1 位作者 Zhenming Liu Liangren Zhang 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2018年第7期451-459,共9页
Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggab... Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggable chemical space. Here, deep learning-based molecule generative model, which is a recent technique in de novo molecule design, was applied to generate virtual libraries with NP-like properties. Results demonstrated that the model was effective in generating molecules that highly resemble NPs. Moreover, the model was also found to be capable of generating NP-like molecules that were also easy to synthesize, significantly increasing the practical value of the compound library. 展开更多
关键词 Natural product Deep learning generative model Virtual library design
原文传递
Quantum Generative Model with Variable-Depth Circuit
6
作者 Yiming Huang Hang Lei +3 位作者 Xiaoyu Li Qingsheng Zhu Wanghao Ren Xusheng Liu 《Computers, Materials & Continua》 SCIE EI 2020年第10期445-458,共14页
In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid qua... In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid quantum-classical framework,which is constructed by a variational quantum circuit(VQC)and an optimizer,plays a key role in the latest quantum machine learning studies.Nevertheless,in these hybrid-framework-based quantum machine learning models,the VQC is mainly constructed with a fixed structure and this structure causes inflexibility problems.There are also few studies focused on comparing the performance of quantum generative models with different loss functions.In this study,we address the inflexibility problem by adopting the variable-depth VQC model to automatically change the structure of the quantum circuit according to the qBAS score.The basic idea behind the variable-depth VQC is to consider the depth of the quantum circuit as a parameter during the training.Meanwhile,we compared the performance of the variable-depth VQC model based on four widely used statistical distances set as the loss functions,including Kullback-Leibler divergence(KL-divergence),Jensen-Shannon divergence(JS-divergence),total variation distance,and maximum mean discrepancy.Our numerical experiment shows a promising result that the variable-depth VQC model works better than the original VQC in the generative learning tasks. 展开更多
关键词 Machine learning quantum information processing generative model
在线阅读 下载PDF
Experimental demonstration of reconstructing quantum states with generative models
7
作者 Xuegang Li Wenjie Jiang +9 位作者 Ziyue Hua Weiting Wang Xiaoxuan Pan Weizhou Cai Zhide Lu Jiaxiu Han Rebing Wu Chang-Ling Zou Dong-Ling Deng Luyan Sun 《Science Bulletin》 2025年第10期1572-1575,共4页
With the rapid development of quantum devices across various platforms[1–4],reconstructing quantum many-body states from experimentally measured data posts a crucial challenge.Straightforward quantum state tomography... With the rapid development of quantum devices across various platforms[1–4],reconstructing quantum many-body states from experimentally measured data posts a crucial challenge.Straightforward quantum state tomography(QST)is only applicable for small systems[5],since the required classical computing resources,such as the number of measurements and the memory size,grow exponentially as the system size increases. 展开更多
关键词 quantum state tomography qst quantum many body states classical computing resources classical computing resourcessuch generative models exponential growth experimentally measured data quantum devices
原文传递
Scoring ISAC:Benchmarking Integrated Sensing and Communications via Score-Based Generative Modeling
8
作者 Lin Chen Chang Cai +2 位作者 Huiyuan Yang Xiaojun Yuan Ying-Jun Angela Zhang 《Journal of Communications and Information Networks》 2025年第3期224-245,共22页
Integrated sensing and communications(ISAC)is a key enabler for next-generation wireless systems,aiming to support both high-throughput communication and high-accuracy environmental sensing using shared spectrum and h... Integrated sensing and communications(ISAC)is a key enabler for next-generation wireless systems,aiming to support both high-throughput communication and high-accuracy environmental sensing using shared spectrum and hardware.Theoretical performance metrics,such as mutual information(MI),minimum mean squared error(MMSE),and Bayesian Cram´er-Rao bound(BCRB),play a key role in evaluating ISAC system performance limits.However,in practice,hardware impairments,multipath propagation,interference,and scene constraints often result in nonlinear,multimodal,and non-Gaussian distributions,making it challenging to derive these metrics analytically.Recently,there has been a growing interest in applying score-based generative models to characterize these metrics from data,although not discussed for ISAC.This paper provides a tutorial-style summary of recent advances in score-based performance evaluation,with a focus on ISAC systems.We refer to the summarized framework as scoring ISAC,which not only reflects the core methodology based on score functions but also emphasizes the goal of scoring(i.e.,evaluating)ISAC systems under realistic conditions.We present the connections between classical performance metrics and the score functions and provide the practical training techniques for learning score functions to estimate performance metrics.Proof-of-concept experiments on target detection and localization validate the accuracy of score-based performance estimators against groundtruth analytical expressions,illustrating their ability to replicate and extend traditional analyses in more complex,realistic settings.This framework demonstrates the great potential of score-based generative models in ISAC performance analysis,algorithm design,and system optimization. 展开更多
关键词 ISAC score-based generative models diffusion model performance evaluation
原文传递
Generative discovery of safer chemical alternatives using diffusion modeling:A case study in green solvent design for cyclohexane/benzene extractive distillation
9
作者 Zhichao Tan Kunsen Lin +1 位作者 Youcai Zhao Tao Zhou 《Journal of Environmental Sciences》 2025年第8期390-401,共12页
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin... Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research. 展开更多
关键词 Chemical alternatives Inverse design Green solvent design generative models
原文传递
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
10
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC Molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
Generative model-assisted sample selection for interest-driven progressive visual analytics
11
作者 Jie Liu Jie Li Jielong Kuang 《Visual Informatics》 2024年第4期97-108,共12页
We propose interest-driven progressive visual analytics.The core idea is to filter samples with features of interest to analysts from the given dataset for analysis.The approach relies on a generative model(GM)trained... We propose interest-driven progressive visual analytics.The core idea is to filter samples with features of interest to analysts from the given dataset for analysis.The approach relies on a generative model(GM)trained using the given dataset as the training set.The GM characteristics make it convenient to find ideal generated samples from its latent space.Then,we filter the original samples similar to the ideal generated ones to explore patterns.Our research involves two methods for achieving and applying the idea.First,we give a method to explore ideal samples from a GM’s latent space.Second,we integrate the method into a system to form an embedding-based analytical workflow.Patterns found on open datasets in case studies,results of quantitative experiments,and positive feedback from experts illustrate the general usability and effectiveness of the approach. 展开更多
关键词 Sample selection Interest-driven generative model Visual analytics Latent space exploration
原文传递
A Deep Collaborative Neural Generative Embedding for Rating Prediction in Movie Recommendation Systems
12
作者 Ravi Nahta Nagaraj Naik +1 位作者 Srivinay Swetha Parvatha Reddy Chandrasekhara 《Computer Modeling in Engineering & Sciences》 2025年第7期461-487,共27页
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films... The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality. 展开更多
关键词 Cold start problem recommender systems METADATA deep learning collaborative filtering generative model
在线阅读 下载PDF
Combining transformer and 3DCNN models to achieve co-design of structures and sequences of antibodies in a diffusional manner
13
作者 Yue Hu Feng Tao +3 位作者 Jiajie Xu Wen-Jun Lan Jing Zhang Wei Lan 《Journal of Pharmaceutical Analysis》 2025年第6期1406-1408,共3页
AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,com... AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models. 展开更多
关键词 advanced algorithm diffusion generative models dcnn epitope targeting antibody design complementary determining regions complementary determining regions cdrs transformer models
在线阅读 下载PDF
An effective method for generating crystal structures based on the variational autoencoder and the diffusion model
14
作者 Chen Chen Jinzhou Zheng +3 位作者 Chaoqin Chu Qinkun Xiao Chaozheng He Xi Fu 《Chinese Chemical Letters》 2025年第4期461-466,共6页
Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in o... Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials. 展开更多
关键词 Deep generative model BCP monolayer Inverse design CDVAE DFT
原文传递
Integrated spatial generalized additive modeling for forest fire prediction:a case study in Fujian Province,China
15
作者 Chunhui Li Zhangwen Su +4 位作者 Rongyu Ni Guangyu Wang Yiyun Ouyang Aicong Zeng Futao Guo 《Journal of Forestry Research》 2025年第3期208-223,共16页
The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environmen... The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences. 展开更多
关键词 Forest fire prediction Logistic regression Spatial generalized additive model Spline functions Piecewise effects
在线阅读 下载PDF
Analysis of height and diameter growth patterns in Sakhalin fir seedlings competing with evergreen dwarf bamboo and deciduous vegetation using generalized additive models
16
作者 Hisanori Harayama Takeshi Yamada +1 位作者 Mitsutoshi Kitao Ikutaro Tsuyama 《Journal of Forestry Research》 2025年第5期76-89,共14页
The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bam... The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas. 展开更多
关键词 Abies sachalinensis Competition Crown cover Forest floor cover Generalized additive models(GAM) Relative growth rate
在线阅读 下载PDF
New insights on generalized heat conduction and thermoelastic coupling models
17
作者 Yue HUANG Lei YAN +1 位作者 Hua WU Yajun YU 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1533-1550,共18页
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi... With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory. 展开更多
关键词 generalized heat conduction thermoelastic coupling transient response generalized Cattaneo-Vernotte(CV)model generalized Green-Naghdi(GN)model
在线阅读 下载PDF
Thermodynamics of classical one-dimensional generalized nonlinear Klein-Gordon lattice model
18
作者 Hu-Wei Jia Ning-Hua Tong 《Chinese Physics B》 2025年第8期381-396,共16页
We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method... We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model. 展开更多
关键词 cluster variation method linear response theory one-dimensional generalized nonlinear Klein-Gordon lattice model
原文传递
Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies 被引量:5
19
作者 Kai Zhang Hai-Qun Yu +7 位作者 Xiao-Peng Ma Jin-Ding Zhang Jian Wang Chuan-Jin Yao Yong-Fei Yang Hai Sun Jun Yao Jian Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期707-719,共13页
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for... For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching. 展开更多
关键词 Multi-source information Automatic history matching Deep learning Data assimilation generative model
原文传递
A novel deep generative modeling-based data augmentation strategy for improving short-term building energy predictions 被引量:5
20
作者 Cheng Fan Meiling Chen +1 位作者 Rui Tang Jiayuan Wang 《Building Simulation》 SCIE EI CSCD 2022年第2期197-211,共15页
Short-term building energy predictions serve as one of the fundamental tasks in building operation management.While large numbers of studies have explored the value of various supervised machine learning techniques in... Short-term building energy predictions serve as one of the fundamental tasks in building operation management.While large numbers of studies have explored the value of various supervised machine learning techniques in energy predictions,few studies have addressed the potential data shortage problem in developing data-driven models.One promising solution is data augmentation,which aims to enrich existing building data resources for reliable predictive modeling.This study proposes a deep generative modeling-based data augmentation strategy for improving short-term building energy predictions.Two types of conditional variational autoencoders have been designed for synthetic energy data generation using fully connected and one-dimensional convolutional layers respectively.Data experiments have been designed to evaluate the value of data augmentation using actual measurements from 52 buildings.The results indicate that conditional variational autoencoders are capable of generating high-quality synthetic data samples,which in turns helps to enhance the accuracy in short-term building energy predictions.The average performance enhancement ratios in terms of CV-RMSE range between 12%and 18%.Practical guidelines have been obtained to ensure the validity and quality of synthetic building energy data.The research outcomes are valuable for enhancing the robustness and reliability of data-driven models for smart building operation management. 展开更多
关键词 building energy predictions data augmentation data-driven models generative modeling variational autoencoders
原文传递
上一页 1 2 17 下一页 到第
使用帮助 返回顶部