The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ...The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.展开更多
Deep learning(DL)has proven to be important for computed tomography(CT)image denoising.However,such models are usually trained under supervision,requiring paired data that may be difficult to obtain in practice.Diffus...Deep learning(DL)has proven to be important for computed tomography(CT)image denoising.However,such models are usually trained under supervision,requiring paired data that may be difficult to obtain in practice.Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling.In particular,using the estimated unconditional score function of the prior distribution,obtained via unsupervised learning,one can sample from the desired posterior via hijacking and regularization.However,due to the iterative solvers used,the number of function evaluations(NFE)required may be orders of magnitudes larger than for single-step samplers.In this paper,we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models(PFGM)++.By hijacking and regularizing the sampling process we obtain a single-step sampler,that is NFE=1.Our proposed method incorporates posterior sampling using diffusion models as a special case.We demonstrate that the added robustness afforded by the PFGM++framework yields significant performance gains.Our results indicate competitive performance compared to popular supervised,including state-of-the-art diffusion-style models with NFE=1(consistency models),unsupervised,and non-DL-based image denoising techniques,on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare.展开更多
Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learnin...Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learning.A Conditional Variational Auto Encoder(CVAE)and an integrated generative network CVAE-GAN that combines the CVAE with the Wasserstein Generative Adversarial Networks(WGAN),are conducted as generative models.They are used to generate target wall Mach distributions for the inverse design that matches specified features,such as locations of suction peak,shock and aft loading.Qualitative and quantitative results show that both adopted generative models can generate diverse and realistic wall Mach number distributions satisfying the given features.The CVAE-GAN model outperforms the CVAE model and achieves better reconstruction accuracies for all the samples in the dataset.Furthermore,a deep neural network for nonlinear mapping is adopted to obtain the airfoil shape corresponding to the target wall Mach number distribution.The performances of the designed deep neural network are fully demonstrated and a smoothness measurement is proposed to quantify small oscillations in the airfoil surface,proving the authenticity and accuracy of the generated airfoil shapes.展开更多
In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independ...In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independent image different from the secret image.The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image.Thus,we only need to transmit the meaning-normal image which is not related to the secret image,and we can achieve the same effect as the transmission of the secret image.This is the first time to propose the coverless image information steganographic scheme based on generative model,compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method,therefore,can effectively resist steganalysis tools.Experimental results show that our scheme has high capacity,security and reliability.展开更多
Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggab...Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggable chemical space. Here, deep learning-based molecule generative model, which is a recent technique in de novo molecule design, was applied to generate virtual libraries with NP-like properties. Results demonstrated that the model was effective in generating molecules that highly resemble NPs. Moreover, the model was also found to be capable of generating NP-like molecules that were also easy to synthesize, significantly increasing the practical value of the compound library.展开更多
In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid qua...In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid quantum-classical framework,which is constructed by a variational quantum circuit(VQC)and an optimizer,plays a key role in the latest quantum machine learning studies.Nevertheless,in these hybrid-framework-based quantum machine learning models,the VQC is mainly constructed with a fixed structure and this structure causes inflexibility problems.There are also few studies focused on comparing the performance of quantum generative models with different loss functions.In this study,we address the inflexibility problem by adopting the variable-depth VQC model to automatically change the structure of the quantum circuit according to the qBAS score.The basic idea behind the variable-depth VQC is to consider the depth of the quantum circuit as a parameter during the training.Meanwhile,we compared the performance of the variable-depth VQC model based on four widely used statistical distances set as the loss functions,including Kullback-Leibler divergence(KL-divergence),Jensen-Shannon divergence(JS-divergence),total variation distance,and maximum mean discrepancy.Our numerical experiment shows a promising result that the variable-depth VQC model works better than the original VQC in the generative learning tasks.展开更多
With the rapid development of quantum devices across various platforms[1–4],reconstructing quantum many-body states from experimentally measured data posts a crucial challenge.Straightforward quantum state tomography...With the rapid development of quantum devices across various platforms[1–4],reconstructing quantum many-body states from experimentally measured data posts a crucial challenge.Straightforward quantum state tomography(QST)is only applicable for small systems[5],since the required classical computing resources,such as the number of measurements and the memory size,grow exponentially as the system size increases.展开更多
Integrated sensing and communications(ISAC)is a key enabler for next-generation wireless systems,aiming to support both high-throughput communication and high-accuracy environmental sensing using shared spectrum and h...Integrated sensing and communications(ISAC)is a key enabler for next-generation wireless systems,aiming to support both high-throughput communication and high-accuracy environmental sensing using shared spectrum and hardware.Theoretical performance metrics,such as mutual information(MI),minimum mean squared error(MMSE),and Bayesian Cram´er-Rao bound(BCRB),play a key role in evaluating ISAC system performance limits.However,in practice,hardware impairments,multipath propagation,interference,and scene constraints often result in nonlinear,multimodal,and non-Gaussian distributions,making it challenging to derive these metrics analytically.Recently,there has been a growing interest in applying score-based generative models to characterize these metrics from data,although not discussed for ISAC.This paper provides a tutorial-style summary of recent advances in score-based performance evaluation,with a focus on ISAC systems.We refer to the summarized framework as scoring ISAC,which not only reflects the core methodology based on score functions but also emphasizes the goal of scoring(i.e.,evaluating)ISAC systems under realistic conditions.We present the connections between classical performance metrics and the score functions and provide the practical training techniques for learning score functions to estimate performance metrics.Proof-of-concept experiments on target detection and localization validate the accuracy of score-based performance estimators against groundtruth analytical expressions,illustrating their ability to replicate and extend traditional analyses in more complex,realistic settings.This framework demonstrates the great potential of score-based generative models in ISAC performance analysis,algorithm design,and system optimization.展开更多
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin...Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.展开更多
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ...Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.展开更多
We propose interest-driven progressive visual analytics.The core idea is to filter samples with features of interest to analysts from the given dataset for analysis.The approach relies on a generative model(GM)trained...We propose interest-driven progressive visual analytics.The core idea is to filter samples with features of interest to analysts from the given dataset for analysis.The approach relies on a generative model(GM)trained using the given dataset as the training set.The GM characteristics make it convenient to find ideal generated samples from its latent space.Then,we filter the original samples similar to the ideal generated ones to explore patterns.Our research involves two methods for achieving and applying the idea.First,we give a method to explore ideal samples from a GM’s latent space.Second,we integrate the method into a system to form an embedding-based analytical workflow.Patterns found on open datasets in case studies,results of quantitative experiments,and positive feedback from experts illustrate the general usability and effectiveness of the approach.展开更多
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films...The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.展开更多
AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,com...AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models.展开更多
Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in o...Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.展开更多
The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environmen...The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.展开更多
The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bam...The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.展开更多
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi...With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory.展开更多
We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method...We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
Short-term building energy predictions serve as one of the fundamental tasks in building operation management.While large numbers of studies have explored the value of various supervised machine learning techniques in...Short-term building energy predictions serve as one of the fundamental tasks in building operation management.While large numbers of studies have explored the value of various supervised machine learning techniques in energy predictions,few studies have addressed the potential data shortage problem in developing data-driven models.One promising solution is data augmentation,which aims to enrich existing building data resources for reliable predictive modeling.This study proposes a deep generative modeling-based data augmentation strategy for improving short-term building energy predictions.Two types of conditional variational autoencoders have been designed for synthetic energy data generation using fully connected and one-dimensional convolutional layers respectively.Data experiments have been designed to evaluate the value of data augmentation using actual measurements from 52 buildings.The results indicate that conditional variational autoencoders are capable of generating high-quality synthetic data samples,which in turns helps to enhance the accuracy in short-term building energy predictions.The average performance enhancement ratios in terms of CV-RMSE range between 12%and 18%.Practical guidelines have been obtained to ensure the validity and quality of synthetic building energy data.The research outcomes are valuable for enhancing the robustness and reliability of data-driven models for smart building operation management.展开更多
文摘The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.
基金supported by MedTechLabs,GE HealthCare,the Swedish Research council,No.2021-05103the Göran Gustafsson foundation,No.2114.
文摘Deep learning(DL)has proven to be important for computed tomography(CT)image denoising.However,such models are usually trained under supervision,requiring paired data that may be difficult to obtain in practice.Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling.In particular,using the estimated unconditional score function of the prior distribution,obtained via unsupervised learning,one can sample from the desired posterior via hijacking and regularization.However,due to the iterative solvers used,the number of function evaluations(NFE)required may be orders of magnitudes larger than for single-step samplers.In this paper,we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models(PFGM)++.By hijacking and regularizing the sampling process we obtain a single-step sampler,that is NFE=1.Our proposed method incorporates posterior sampling using diffusion models as a special case.We demonstrate that the added robustness afforded by the PFGM++framework yields significant performance gains.Our results indicate competitive performance compared to popular supervised,including state-of-the-art diffusion-style models with NFE=1(consistency models),unsupervised,and non-DL-based image denoising techniques,on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare.
基金co-supported by the National Key Project of China(No.GJXM92579)the National Natural Science Foundation of China(Nos.92052203,61903178 and61906081)。
文摘Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learning.A Conditional Variational Auto Encoder(CVAE)and an integrated generative network CVAE-GAN that combines the CVAE with the Wasserstein Generative Adversarial Networks(WGAN),are conducted as generative models.They are used to generate target wall Mach distributions for the inverse design that matches specified features,such as locations of suction peak,shock and aft loading.Qualitative and quantitative results show that both adopted generative models can generate diverse and realistic wall Mach number distributions satisfying the given features.The CVAE-GAN model outperforms the CVAE model and achieves better reconstruction accuracies for all the samples in the dataset.Furthermore,a deep neural network for nonlinear mapping is adopted to obtain the airfoil shape corresponding to the target wall Mach number distribution.The performances of the designed deep neural network are fully demonstrated and a smoothness measurement is proposed to quantify small oscillations in the airfoil surface,proving the authenticity and accuracy of the generated airfoil shapes.
基金This paper was supported by the National Natural Science Foundation of China(No.U1204606)the Key Programs for Science and Technology Development of Henan Province(No.172102210335)Key Scientific Research Projects in Henan Universities(No.16A520058).
文摘In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independent image different from the secret image.The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image.Thus,we only need to transmit the meaning-normal image which is not related to the secret image,and we can achieve the same effect as the transmission of the secret image.This is the first time to propose the coverless image information steganographic scheme based on generative model,compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method,therefore,can effectively resist steganalysis tools.Experimental results show that our scheme has high capacity,security and reliability.
基金The National Natural Science Foundation of China(Grant No.81573273,81673279,21572010 and 21772005)National Major Scientific and Technological Special Project for"Significant New Drugs Development"(Grant No.2018ZX09735001-003)
文摘Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggable chemical space. Here, deep learning-based molecule generative model, which is a recent technique in de novo molecule design, was applied to generate virtual libraries with NP-like properties. Results demonstrated that the model was effective in generating molecules that highly resemble NPs. Moreover, the model was also found to be capable of generating NP-like molecules that were also easy to synthesize, significantly increasing the practical value of the compound library.
基金This work has received support from the National Key Research&Development Plan of China under Grant No.2018YFA0306703.
文摘In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid quantum-classical framework,which is constructed by a variational quantum circuit(VQC)and an optimizer,plays a key role in the latest quantum machine learning studies.Nevertheless,in these hybrid-framework-based quantum machine learning models,the VQC is mainly constructed with a fixed structure and this structure causes inflexibility problems.There are also few studies focused on comparing the performance of quantum generative models with different loss functions.In this study,we address the inflexibility problem by adopting the variable-depth VQC model to automatically change the structure of the quantum circuit according to the qBAS score.The basic idea behind the variable-depth VQC is to consider the depth of the quantum circuit as a parameter during the training.Meanwhile,we compared the performance of the variable-depth VQC model based on four widely used statistical distances set as the loss functions,including Kullback-Leibler divergence(KL-divergence),Jensen-Shannon divergence(JS-divergence),total variation distance,and maximum mean discrepancy.Our numerical experiment shows a promising result that the variable-depth VQC model works better than the original VQC in the generative learning tasks.
基金supported by the National Natural Science Foundation of China(11925404,92165209,92265210,92365301,T2225008,12075128,and 62173201)the Innovation Program for Quantum Science and Technology(2021ZD0300203,2021ZD0302203,and 2021ZD0300201)+1 种基金the National Key Research and Development Program of China(2017YFA0304303)the Tsinghua University Dushi Program,and the Shanghai Qi Zhi Institute Innovation Program(SQZ202318)。
文摘With the rapid development of quantum devices across various platforms[1–4],reconstructing quantum many-body states from experimentally measured data posts a crucial challenge.Straightforward quantum state tomography(QST)is only applicable for small systems[5],since the required classical computing resources,such as the number of measurements and the memory size,grow exponentially as the system size increases.
基金supported in part by the General Research Fund from the Research Grants Council of Hong Kong,China,under Project 14202421,Project 14214122,Project 14202723,and Project 14207624in part by Area of Excellence Scheme grant from the Research Grants Council of Hong Kong,China,under Project number AoE/E-601/22-R+2 种基金in part by NSFC/RGC Collaborative Research Scheme from the Research Grants Council of Hong Kong,China,under Project CRS HKUST603/22 and Project CRS HKU702/24in part by the National Natural Science Foundation of China under Grant 62571087in part by Sichuan Science and Technology Program under Grant 2024ZYD0036.
文摘Integrated sensing and communications(ISAC)is a key enabler for next-generation wireless systems,aiming to support both high-throughput communication and high-accuracy environmental sensing using shared spectrum and hardware.Theoretical performance metrics,such as mutual information(MI),minimum mean squared error(MMSE),and Bayesian Cram´er-Rao bound(BCRB),play a key role in evaluating ISAC system performance limits.However,in practice,hardware impairments,multipath propagation,interference,and scene constraints often result in nonlinear,multimodal,and non-Gaussian distributions,making it challenging to derive these metrics analytically.Recently,there has been a growing interest in applying score-based generative models to characterize these metrics from data,although not discussed for ISAC.This paper provides a tutorial-style summary of recent advances in score-based performance evaluation,with a focus on ISAC systems.We refer to the summarized framework as scoring ISAC,which not only reflects the core methodology based on score functions but also emphasizes the goal of scoring(i.e.,evaluating)ISAC systems under realistic conditions.We present the connections between classical performance metrics and the score functions and provide the practical training techniques for learning score functions to estimate performance metrics.Proof-of-concept experiments on target detection and localization validate the accuracy of score-based performance estimators against groundtruth analytical expressions,illustrating their ability to replicate and extend traditional analyses in more complex,realistic settings.This framework demonstrates the great potential of score-based generative models in ISAC performance analysis,algorithm design,and system optimization.
基金supported by Shanghai Science and Technology Commission Project(No.21DZ1201502)Shanghai Municipal Bureau of Ecology and Environment(Shanghai Environ-mental Science[2023]No.40)+1 种基金the Interdisciplinary Joint Research Project of Tongji University(No.2022-4-YB-12)Shanghai Science and Technology Commission Project(No.22DZ2200200).
文摘Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.
基金supported by the Yonsei University graduate school Department of Integrative Biotechnology.
文摘Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.
文摘We propose interest-driven progressive visual analytics.The core idea is to filter samples with features of interest to analysts from the given dataset for analysis.The approach relies on a generative model(GM)trained using the given dataset as the training set.The GM characteristics make it convenient to find ideal generated samples from its latent space.Then,we filter the original samples similar to the ideal generated ones to explore patterns.Our research involves two methods for achieving and applying the idea.First,we give a method to explore ideal samples from a GM’s latent space.Second,we integrate the method into a system to form an embedding-based analytical workflow.Patterns found on open datasets in case studies,results of quantitative experiments,and positive feedback from experts illustrate the general usability and effectiveness of the approach.
文摘The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.
基金supported by the Key Project of International Cooperation of Qilu University of Technology(Grant No.:QLUTGJHZ2018008)Shandong Provincial Natural Science Foundation Committee,China(Grant No.:ZR2016HB54)Shandong Provincial Key Laboratory of Microbial Engineering(SME).
文摘AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models.
基金supported by the National Nature Science Foundation of China (Nos. 61671362 and 62071366)。
文摘Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
基金supported by the Fujian Provincial Science and Technology Program“University-Industry Cooperation Project”(2024Y4015)National Key R&D Plan of Strategic International Scientific and Technological Innovation Cooperation Project(2018YFE0207800).
文摘The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.
基金supported by the Ministry of Agriculture,Forestry,and Fisheries of Japan (25093 C)JSPS KAKENHI (JP23H02262)
文摘The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.
基金Project supported by the Guangdong Basic and Applied Basic Research Foundation of China(No.2023A1515012809)the Natural Science Foundation of Shaanxi Province of China(No.2023-JC-YB-073)the Fundamental Research Funds for the Central Universities of China(No.D5000230066)。
文摘With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory.
基金supported by the National Natural Science Foundation of China(Grant No.11974420).
文摘We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金support of this research by the National Natural Science Foundation of China(No.51908365,No.71772125)the Philosophical and Social Science Program of Guangdong Province,China(GD18YGL07).
文摘Short-term building energy predictions serve as one of the fundamental tasks in building operation management.While large numbers of studies have explored the value of various supervised machine learning techniques in energy predictions,few studies have addressed the potential data shortage problem in developing data-driven models.One promising solution is data augmentation,which aims to enrich existing building data resources for reliable predictive modeling.This study proposes a deep generative modeling-based data augmentation strategy for improving short-term building energy predictions.Two types of conditional variational autoencoders have been designed for synthetic energy data generation using fully connected and one-dimensional convolutional layers respectively.Data experiments have been designed to evaluate the value of data augmentation using actual measurements from 52 buildings.The results indicate that conditional variational autoencoders are capable of generating high-quality synthetic data samples,which in turns helps to enhance the accuracy in short-term building energy predictions.The average performance enhancement ratios in terms of CV-RMSE range between 12%and 18%.Practical guidelines have been obtained to ensure the validity and quality of synthetic building energy data.The research outcomes are valuable for enhancing the robustness and reliability of data-driven models for smart building operation management.