In this paper, the generative approach utilizes recursion to generate process sequence for a part, and then match detail procedure design and select process equipment. A set of recursive formulas are found. Finally ...In this paper, the generative approach utilizes recursion to generate process sequence for a part, and then match detail procedure design and select process equipment. A set of recursive formulas are found. Finally a complete process program is produced. The method is simple than that of the knowledge system, the artificial neural networks and variant approach computer aided process planning(VACAPP).展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak...A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak value of the 1-breather solution are calculated.Additionally,through the asymptotic analysis of 2-breather solution,we show that two breathers undergo an elastic collision.By applying the generalized long-wave limit method,the fundamental and second-order rogue wave solutions for the complex m Kd V equation are obtained from the 1-breather and 2-breather solutions,respectively.We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex m Kd V equation from the 2-breather solution.Furthermore,the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex m Kd V equation are derived from the 3-breather solution via the generalized long-wave limit method.By controlling the phase parameters of breathers,the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)En...This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.展开更多
In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions ...In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions in the form of trigonometric, hyperbolic, and rational function solutions. The graphical representations of some solutions by assigning particular values to the parameters under prescribed conditions in each solutions and comparing of solutions with those gained by other authors indicate that these employed techniques are more effective, efficient and applicable mathematical tools for solving nonlinear problems in applied science.展开更多
Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub&...Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is展开更多
We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significa...We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significant improvement in calculation accuracy compared to previous predictions and correct the misidentification of resonance electron configuration in previous works.It is found that the resonance states approximately follow an n^(2)-scaling law which is similar to the bound counterparts.The birth of a new resonance would distort the trajectory of an adjacent higher-lying resonance.展开更多
Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent ...Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent horizontal slices is presented.In view of the upper-bound limit analysis theory,the energy equation is derived and the ultimate failure mode is generated by comparing the sliding surface passing through the slope toe(mode A)with that below(mode B).In addition,the influence of the number of slices on the stability coefficients in the GHSM is studied and the stable value is obtained.Compared to the original method(Chen’s method),the GHSM can acquire more precise results,which takes into account the energy dissipation in the inner sliding soil mass.Moreover,the GHSM,limit equilibrium method(LEM)and numerical simulation method(NSM)are applied to analyze the stability of a multi-layer slope with different slope angles and the results of the safety factor and failure mode are very close in each case.The ultimate failure modes are shown to be mode B when the slope angle is not more than 28°.It illustrates that the determination of the ultimate sliding surface requires comparison of multiple failure modes,not only mode A.展开更多
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar...Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.展开更多
In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators...In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.展开更多
The study aims to explore the impact of governance and macroeconomic conditions on financial stability in developed and emerging countries.The study sample comprised 122 countries from 2013 to 2020,and a comprehensive...The study aims to explore the impact of governance and macroeconomic conditions on financial stability in developed and emerging countries.The study sample comprised 122 countries from 2013 to 2020,and a comprehensive set of variables was used to construct the financial stability index(FSI).The results of the two-step system GMM analysis,robust with D–K regression,indicate that interest rate,GDP growth,voice and accountability,political stability and absence of violence/terrorism,government effectiveness,regulatory quality,and control of corruption have a positive and statistically significant impact on financial stability.However,inflation,money supply,and the rule of law have adverse and insignificant effects on financial stability.Notably,the findings vary between developed and emerging countries due to differences in governance and macroeconomic conditions and their role in financial stability.The study concludes that regulatory governance and macroeconomic conditions are crucial for financial stability.These outcomes are significant for central banks,academia,and policymakers,as they emphasize the need for stable financial systems and sustainable,balanced growth through governance and macroeconomic conditions.展开更多
According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam e...According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam element, a finite element program for computing thin-walled box steel beams is developed. And the program can take the section distortion and warping effects into account. The influences of diaphragm spacing on the mechanical behavior of thin-walled box beams are analyzed by the program. The numerical analysis shows that setting diaphragms have the greatest influence on the distortion normal stress, while there is very little influence on the bending normal stress. Only when the distance of adjacent diaphragms decreases to a certain value, will the distortion normal stress in the thin-walled box beam obviously reduce under the distortion load. Finally, a distortion-warping coefficient γ is introduced for simplifying the calculation of the longitudinal normal stress of thin-walled box beams. When the ratio of diaphragms adjacent space L to the maximum section dimension H is less than 2, the distortion-warping coefficient γ tends to one, which means that the distortion normal stress of the thin-walled box beam tends to zero, and the effect of the section distortion can be ignored.展开更多
Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integ...Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integer order systems to the non-integer order systems. Then, the weighted iteration method is presented to overcome the shortcomings of the first method. Results show that the proposed methods have better performance compared with the integer order identification method. For the non-integer order systems, the proposed methods have the better fitting for the system frequency response. For the integer order system, if commensurate order scanning is applied, the proposed methods can also achieve the best integer order model which fits the system frequency response. At the same time, the proposed algorithms are more stable.展开更多
Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TF...Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TFP. By estimating China's pollution treatment productivity between 2001 and 2008 and analyzing environmental regulation intensity and the effects of the relevant factors and pollution treatment productivity using panel data, this paper discovers that (1) pollution treatment productivity contributed a significant share of about 40% to industrial environmental TFP during the investigation period; (2) environmental regulation may not necessarily cause adverse impacts on pollution treatment efficiency and productivity but demonstrates a U-shaped relationship: when the share of pollution treatment cost in industrial value-added is above the range of 3.8%-5.1%, environmental regulation is likely to promote pollution treatment productivity and thus environmental TFP Judging by the estimation result, enhancing environmental protection and expediting the development of ecological civilization are conducive to China "s economic transition towards an intensive, efficient, circular, and sustainable development pattern. China's current industrial development has the capacity to tolerate a rather demanding level of pollution treatment and management and China needs to further rely on energy conservation and the environmental production industries to promote the progress of pollution treatment technologies.展开更多
Several micromechanics models for the determination of composite moduli are investigated in this paper,including the dilute solution,self-consistent method,generalized self-consistent method,and Mori-Tanaka's meth...Several micromechanics models for the determination of composite moduli are investigated in this paper,including the dilute solution,self-consistent method,generalized self-consistent method,and Mori-Tanaka's method.These mi- cromechanical models have been developed by following quite different approaches and physical interpretations.It is shown that all the micromechanics models share a common ground,the generalized Budiansky's energy-equivalence framework.The dif- ference among the various models is shown to be the way in which the average strain of the inclusion phase is evaluated.As a bonus of this theoretical development,the asymmetry suffered in Mori-Tanaka's method can be circumvented and the applica- bility of the generalized self-consistent method can be extended to materials contain- ing microcracks,multiphase inclusions,non-spherical inclusions,or non-cylindrical inclusions.The relevance to the differential method,double-inclusion model,and Hashin-Shtrikman bounds is also discussed.The application of these micromechanics models to particulate-reinforced composites and microcracked solids is reviewed and some new results are presented.展开更多
A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry...A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method.展开更多
As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs us...As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.展开更多
文摘In this paper, the generative approach utilizes recursion to generate process sequence for a part, and then match detail procedure design and select process equipment. A set of recursive formulas are found. Finally a complete process program is produced. The method is simple than that of the knowledge system, the artificial neural networks and variant approach computer aided process planning(VACAPP).
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12061051 and 12461048)。
文摘A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak value of the 1-breather solution are calculated.Additionally,through the asymptotic analysis of 2-breather solution,we show that two breathers undergo an elastic collision.By applying the generalized long-wave limit method,the fundamental and second-order rogue wave solutions for the complex m Kd V equation are obtained from the 1-breather and 2-breather solutions,respectively.We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex m Kd V equation from the 2-breather solution.Furthermore,the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex m Kd V equation are derived from the 3-breather solution via the generalized long-wave limit method.By controlling the phase parameters of breathers,the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
文摘This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.
文摘In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions in the form of trigonometric, hyperbolic, and rational function solutions. The graphical representations of some solutions by assigning particular values to the parameters under prescribed conditions in each solutions and comparing of solutions with those gained by other authors indicate that these employed techniques are more effective, efficient and applicable mathematical tools for solving nonlinear problems in applied science.
基金The works is supported by the National Natural Science Foundation of China(19871054)
文摘Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is
基金supported by the National Natural Science Foundation of China(Grant No.12174147)the Chinese Scholarship Council(Grant Nos.202108210152 and 202006175016).
文摘We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significant improvement in calculation accuracy compared to previous predictions and correct the misidentification of resonance electron configuration in previous works.It is found that the resonance states approximately follow an n^(2)-scaling law which is similar to the bound counterparts.The birth of a new resonance would distort the trajectory of an adjacent higher-lying resonance.
基金support provided by the National Key R&D Program of China(No.2017YFC1501304)the National Natural Science Foundation of China(Nos.42090054,41922055 and 41931295)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGGC09).
文摘Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent horizontal slices is presented.In view of the upper-bound limit analysis theory,the energy equation is derived and the ultimate failure mode is generated by comparing the sliding surface passing through the slope toe(mode A)with that below(mode B).In addition,the influence of the number of slices on the stability coefficients in the GHSM is studied and the stable value is obtained.Compared to the original method(Chen’s method),the GHSM can acquire more precise results,which takes into account the energy dissipation in the inner sliding soil mass.Moreover,the GHSM,limit equilibrium method(LEM)and numerical simulation method(NSM)are applied to analyze the stability of a multi-layer slope with different slope angles and the results of the safety factor and failure mode are very close in each case.The ultimate failure modes are shown to be mode B when the slope angle is not more than 28°.It illustrates that the determination of the ultimate sliding surface requires comparison of multiple failure modes,not only mode A.
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
文摘Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.
文摘In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.
文摘The study aims to explore the impact of governance and macroeconomic conditions on financial stability in developed and emerging countries.The study sample comprised 122 countries from 2013 to 2020,and a comprehensive set of variables was used to construct the financial stability index(FSI).The results of the two-step system GMM analysis,robust with D–K regression,indicate that interest rate,GDP growth,voice and accountability,political stability and absence of violence/terrorism,government effectiveness,regulatory quality,and control of corruption have a positive and statistically significant impact on financial stability.However,inflation,money supply,and the rule of law have adverse and insignificant effects on financial stability.Notably,the findings vary between developed and emerging countries due to differences in governance and macroeconomic conditions and their role in financial stability.The study concludes that regulatory governance and macroeconomic conditions are crucial for financial stability.These outcomes are significant for central banks,academia,and policymakers,as they emphasize the need for stable financial systems and sustainable,balanced growth through governance and macroeconomic conditions.
基金Specialized Research Fund for the Doctoral Program of Higher Education (No.20070247002)
文摘According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam element, a finite element program for computing thin-walled box steel beams is developed. And the program can take the section distortion and warping effects into account. The influences of diaphragm spacing on the mechanical behavior of thin-walled box beams are analyzed by the program. The numerical analysis shows that setting diaphragms have the greatest influence on the distortion normal stress, while there is very little influence on the bending normal stress. Only when the distance of adjacent diaphragms decreases to a certain value, will the distortion normal stress in the thin-walled box beam obviously reduce under the distortion load. Finally, a distortion-warping coefficient γ is introduced for simplifying the calculation of the longitudinal normal stress of thin-walled box beams. When the ratio of diaphragms adjacent space L to the maximum section dimension H is less than 2, the distortion-warping coefficient γ tends to one, which means that the distortion normal stress of the thin-walled box beam tends to zero, and the effect of the section distortion can be ignored.
文摘Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integer order systems to the non-integer order systems. Then, the weighted iteration method is presented to overcome the shortcomings of the first method. Results show that the proposed methods have better performance compared with the integer order identification method. For the non-integer order systems, the proposed methods have the better fitting for the system frequency response. For the integer order system, if commensurate order scanning is applied, the proposed methods can also achieve the best integer order model which fits the system frequency response. At the same time, the proposed algorithms are more stable.
文摘Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TFP. By estimating China's pollution treatment productivity between 2001 and 2008 and analyzing environmental regulation intensity and the effects of the relevant factors and pollution treatment productivity using panel data, this paper discovers that (1) pollution treatment productivity contributed a significant share of about 40% to industrial environmental TFP during the investigation period; (2) environmental regulation may not necessarily cause adverse impacts on pollution treatment efficiency and productivity but demonstrates a U-shaped relationship: when the share of pollution treatment cost in industrial value-added is above the range of 3.8%-5.1%, environmental regulation is likely to promote pollution treatment productivity and thus environmental TFP Judging by the estimation result, enhancing environmental protection and expediting the development of ecological civilization are conducive to China "s economic transition towards an intensive, efficient, circular, and sustainable development pattern. China's current industrial development has the capacity to tolerate a rather demanding level of pollution treatment and management and China needs to further rely on energy conservation and the environmental production industries to promote the progress of pollution treatment technologies.
文摘Several micromechanics models for the determination of composite moduli are investigated in this paper,including the dilute solution,self-consistent method,generalized self-consistent method,and Mori-Tanaka's method.These mi- cromechanical models have been developed by following quite different approaches and physical interpretations.It is shown that all the micromechanics models share a common ground,the generalized Budiansky's energy-equivalence framework.The dif- ference among the various models is shown to be the way in which the average strain of the inclusion phase is evaluated.As a bonus of this theoretical development,the asymmetry suffered in Mori-Tanaka's method can be circumvented and the applica- bility of the generalized self-consistent method can be extended to materials contain- ing microcracks,multiphase inclusions,non-spherical inclusions,or non-cylindrical inclusions.The relevance to the differential method,double-inclusion model,and Hashin-Shtrikman bounds is also discussed.The application of these micromechanics models to particulate-reinforced composites and microcracked solids is reviewed and some new results are presented.
基金The project supported by the Special Funds for State Key Basic Research Projects under Grant No.G1999,032800
文摘A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method.
基金supported by Science and Technology Major Project of Shanxi Province,China(No.20201101002)Science and Technology Major Project of China,China(No.2016ZX05043002)+1 种基金National Natural Science Foundation Project of China,China(No.51874319)Science Foundation of China University of Petroleum(Beijing),China(No.2462020QNXZ003)to support part of this work
文摘As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.