Cyber-Physical Systems integrated with information technologies introduce vulnerabilities that extend beyond traditional cyber threats.Attackers can non-invasively manipulate sensors and spoof controllers,which in tur...Cyber-Physical Systems integrated with information technologies introduce vulnerabilities that extend beyond traditional cyber threats.Attackers can non-invasively manipulate sensors and spoof controllers,which in turn increases the autonomy of the system.Even though the focus on protecting against sensor attacks increases,there is still uncertainty about the optimal timing for attack detection.Existing systems often struggle to manage the trade-off between latency and false alarm rate,leading to inefficiencies in real-time anomaly detection.This paper presents a framework designed to monitor,predict,and control dynamic systems with a particular emphasis on detecting and adapting to changes,including anomalies such as“drift”and“attack”.The proposed algorithm integrates a Transformer-based Attention Generative Adversarial Residual model,which combines the strengths of generative adversarial networks,residual networks,and attention algorithms.The system operates in two phases:offline and online.During the offline phase,the proposed model is trained to learn complex patterns,enabling robust anomaly detection.The online phase applies a trained model,where the drift adapter adjusts the model to handle data changes,and the attack detector identifies deviations by comparing predicted and actual values.Based on the output of the attack detector,the controller makes decisions then the actuator executes suitable actions.Finally,the experimental findings show that the proposed model balances detection accuracy of 99.25%,precision of 98.84%,sensitivity of 99.10%,specificity of 98.81%,and an F1-score of 98.96%,thus provides an effective solution for dynamic and safety-critical environments.展开更多
Multifocal metalenses are of great concern in optical communications,optical imaging and micro-optics systems,but their design is extremely challenging.In recent years,deep learning methods have provided novel solutio...Multifocal metalenses are of great concern in optical communications,optical imaging and micro-optics systems,but their design is extremely challenging.In recent years,deep learning methods have provided novel solutions to the design of optical planar devices.Here,an approach is proposed to explore the use of generative adversarial networks(GANs)to realize the design of metalenses with different focusing positions at dual wavelengths.This approach includes a forward network and an inverse network,where the former predicts the optical response of meta-atoms and the latter generates structures that meet specific requirements.Compared to the traditional search method,the inverse network demonstrates higher precision and efficiency in designing a dual-wavelength bifocal metalens.The results will provide insights and methodologies for the design of tunable wavelength metalenses,while also highlighting the potential of deep learning in optical device design.展开更多
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adver...Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.展开更多
Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the conf...Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set.展开更多
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit...Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas.展开更多
It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-ba...It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process.展开更多
With the increasing demands of health care,the design of hospital buildings has become increasingly demanding and complicated.However,the traditional layout design method for hospital is labor intensive,time consuming...With the increasing demands of health care,the design of hospital buildings has become increasingly demanding and complicated.However,the traditional layout design method for hospital is labor intensive,time consuming and prone to errors.With the development of artificial intelligence(AI),the intelligent design method has become possible and is considered to be suitable for the layout design of hospital buildings.Two intelli-gent design processes based on healthcare systematic layout planning(HSLP)and generative adversarial network(GAN)are proposed in this paper,which aim to solve the generation problem of the plane functional layout of the operating departments(ODs)of general hospitals.The first design method that is more like a mathemati-cal model with traditional optimization algorithm concerns the following two steps:developing the HSLP model based on the conventional systematic layout planning(SLP)theory,identifying the relationship and flows amongst various departments/units,and arriving at the preliminary plane layout design;establishing mathematical model to optimize the building layout by using the genetic algorithm(GA)to obtain the optimized scheme.The specific process of the second intelligent design based on more than 100 sets of collected OD drawings includes:labelling the corresponding functional layouts of each OD plan;building image-to-image translation with conditional ad-versarial network(pix2pix)for training OD plane layouts,which is one of the most representative GAN models.Finally,the functions and features of the results generated by the two methods are analyzed and compared from an architectural and algorithmic perspective.Comparison of the two design methods shows that the HSLP and GAN models can autonomously generate new OD plane functional layouts.The HSLP layouts have clear functional area adjacencies and optimization goals,but the layouts are relatively rigid and not specific enough.The GAN outputs are the most innovative layouts with strong applicability,but the dataset has strict constraints.The goal of this paper is to help release the heavy load of architects in the early design stage and present the effectiveness of these intelligent design methods in the field of medical architecture.展开更多
Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis...Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10.展开更多
Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss...Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples,and the effectiveness of the loss functions in improving the generating ability of GANs.In this paper,we present a detailed survey for the loss functions used in GANs,and provide a critical analysis on the pros and cons of these loss functions.First,the basic theory of GANs along with the training mechanism are introduced.Then,the most commonly used loss functions in GANs are introduced and analyzed.Third,the experimental analyses and comparison of these loss functions are presented in different GAN architectures.Finally,several suggestions on choosing suitable loss functions for image synthesis tasks are given.展开更多
Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immedi...Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immediate demand for clear vision. Recently, in addition to the conventional dehazing mechanisms, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired “in the wild” and how we could gauge the progress in the field. To bridge this gap, this presents a comprehensive study on three single image dehazing state-of-the-art GAN models, such as AOD-Net, cGAN, and DHSGAN. We have experimented using benchmark dataset consisting of both synthetic and real-world hazy images. The obtained results are evaluated both quantitatively and qualitatively. Among these techniques, the DHSGAN gives the best performance.展开更多
With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a s...With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a single-dish antenna.In contrast from a direct imaging system,an AS telescope captures the Fourier coefficients of a spatial object,and then implement inverse Fourier transform to reconstruct the spatial image.Due to the limited number of antennas,the Fourier coefficients are extremely sparse in practice,resulting in a very blurry image.To remove/reduce blur,“CLEAN”deconvolution has been widely used in the literature.However,it was initially designed for a point source.For an extended source,like the Sun,its efficiency is unsatisfactory.In this study,a deep neural network,referring to Generative Adversarial Network(GAN),is proposed for solar image deconvolution.The experimental results demonstrate that the proposed model is markedly better than traditional CLEAN on solar images.The main purpose of this work is visual inspection instead of quantitative scientific computation.We believe that this will also help scientists to better understand solar phenomena with high quality images.展开更多
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image...The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality.展开更多
Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for tem...Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for temporal coherence across frames.In this paper,we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network(DD-GAN).The DDGAN comprises a Deep Deconvolutional Neural Network(DDNN)as a Generator(G)and a modified Deep Convolutional Neural Network(DCNN)as a Discriminator(D)to ensure temporal coherence between adjacent frames.The proposed research involves several steps.First,the input text is fed into a Long Short Term Memory(LSTM)based text encoder and then smoothed using Conditioning Augmentation(CA)techniques to enhance the effectiveness of the Generator(G).Next,using a DDNN to generate video frames by incorporating enhanced text and random noise and modifying a DCNN to act as a Discriminator(D),effectively distinguishing between generated and real videos.This research evaluates the quality of the generated videos using standard metrics like Inception Score(IS),Fréchet Inception Distance(FID),Fréchet Inception Distance for video(FID2vid),and Generative Adversarial Metric(GAM),along with a human study based on realism,coherence,and relevance.By conducting experiments on Single-Digit Bouncing MNIST GIFs(SBMG),Two-Digit Bouncing MNIST GIFs(TBMG),and a custom dataset of essential mathematics videos with related text,this research demonstrates significant improvements in both metrics and human study results,confirming the effectiveness of DD-GAN.This research also took the exciting challenge of generating preschool math videos from text,handling complex structures,digits,and symbols,and achieving successful results.The proposed research demonstrates promising results for generating coherent videos from textual input.展开更多
Boundary equilibrium generative adversarial networks(BEGANs)are the improved version of generative adversarial networks(GANs).In this paper,an improved BEGAN with a skip-connection technique in the generator and the d...Boundary equilibrium generative adversarial networks(BEGANs)are the improved version of generative adversarial networks(GANs).In this paper,an improved BEGAN with a skip-connection technique in the generator and the discriminator is proposed.Moreover,an alternative time-scale update rule is adopted to balance the learning rate of the generator and the discriminator.Finally,the performance of the proposed method is quantitatively evaluated by Fréchet inception distance(FID)and inception score(IS).The test results show that the performance of the proposed method is better than that of the original BEGAN.展开更多
Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper f...Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic.We are using Deep Convolutional Generative Adversarial Networks(DCGAN)to trick the malware classifier to believe it is a normal entity.In this work,a new dataset is created to fool the Artificial Intelligence(AI)based malware detectors,and it consists of different types of attacks such as Denial of Service(DoS),scan 11,scan 44,botnet,spam,User Datagram Portal(UDP)scan,and ssh scan.The discriminator used in the DCGAN discriminates two different attack classes(anomaly and synthetic)and one normal class.The model collapse,instability,and vanishing gradient issues associated with the DCGAN are overcome using the proposed hybrid Aquila optimizer-based Mine blast harmony search algorithm(AO-MBHS).This algorithm helps the generator to create realistic malware samples to be undetected by the discriminator.The performance of the proposed methodology is evaluated using different performance metrics such as training time,detection rate,F-Score,loss function,Accuracy,False alarm rate,etc.The superiority of the hybrid AO-MBHS based DCGAN model is noticed when the detection rate is changed to 0 after the retraining method to make the defensive technique hard to be noticed by the malware detection system.The support vector machines(SVM)is used as the malicious traffic detection application and its True positive rate(TPR)goes from 80%to 0%after retraining the proposed model which shows the efficiency of the proposed model in hiding the samples.展开更多
In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution ...In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network(DCGAN)and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator(GG)with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise(MSN)method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network.展开更多
Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication.This study addresses challenges associated with small datasets and class imba...Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication.This study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network(GAN)based augmentation on diverse datasets,including iSarcasm,SemEval-18,and Ghosh.This research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network(RGAN).The proposed RGAN method works by inverting labels between original and synthetic data during the training process.This inversion of labels provides feedback to the generator for generating high-quality data closely resembling the original distribution.Notably,the proposed RGAN model exhibits performance on par with standard GAN,showcasing its robust efficacy in augmenting text data.The exploration of various datasets highlights the nuanced impact of augmentation on model performance,with cautionary insights into maintaining a delicate balance between synthetic and original data.The methodological framework encompasses comprehensive data pre-processing and GAN-based augmentation,with a meticulous comparison against Natural Language Processing Augmentation(NLPAug)as an alternative augmentation technique.Overall,the F1-score of our proposed technique outperforms that of the synonym replacement augmentation technique using NLPAug.The increase in F1-score in experiments using RGAN ranged from 0.066%to 1.054%,and the use of standard GAN resulted in a 2.88%increase in F1-score.The proposed RGAN model outperformed the NLPAug method and demonstrated comparable performance to standard GAN,emphasizing its efficacy in text data augmentation.展开更多
Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this...Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this paper,we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network(GAN).The generated tile images can be tailored to meet the specific needs of the user for the tile textures.The proposed method consists of four steps.Firstly,a dataset of ceramic tile images with diverse distributions is created and then pre-trained based on GAN.Secondly,for each ceramic tile image in the dataset,the corresponding sketch image is generated and then the mapping relationship between the images is trained based on a sketch extraction network using ResNet Block and jump connection to improve the quality of the generated sketches.Thirdly,the sketch style is redefined according to the characteristics of the ceramic tile images and then double cross-domain adversarial loss functions are employed to guide the ceramic tile generation network for fitting in the direction of the sketch style and to improve the training speed.Finally,we apply hidden space perturbation and interpolation for further enriching the output textures style and satisfying the concept of“one style with multiple faces”.We conduct the training process of the proposed generation network on 2583 ceramic tile images dataset.To measure the generative diversity and quality,we use Frechet Inception Distance(FID)and Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)metrics.The experimental results prove that the proposed model greatly enhances the generation results of the ceramic tile images,with FID of 32.47 and BRISQUE of 28.44.展开更多
文摘Cyber-Physical Systems integrated with information technologies introduce vulnerabilities that extend beyond traditional cyber threats.Attackers can non-invasively manipulate sensors and spoof controllers,which in turn increases the autonomy of the system.Even though the focus on protecting against sensor attacks increases,there is still uncertainty about the optimal timing for attack detection.Existing systems often struggle to manage the trade-off between latency and false alarm rate,leading to inefficiencies in real-time anomaly detection.This paper presents a framework designed to monitor,predict,and control dynamic systems with a particular emphasis on detecting and adapting to changes,including anomalies such as“drift”and“attack”.The proposed algorithm integrates a Transformer-based Attention Generative Adversarial Residual model,which combines the strengths of generative adversarial networks,residual networks,and attention algorithms.The system operates in two phases:offline and online.During the offline phase,the proposed model is trained to learn complex patterns,enabling robust anomaly detection.The online phase applies a trained model,where the drift adapter adjusts the model to handle data changes,and the attack detector identifies deviations by comparing predicted and actual values.Based on the output of the attack detector,the controller makes decisions then the actuator executes suitable actions.Finally,the experimental findings show that the proposed model balances detection accuracy of 99.25%,precision of 98.84%,sensitivity of 99.10%,specificity of 98.81%,and an F1-score of 98.96%,thus provides an effective solution for dynamic and safety-critical environments.
基金National Natural Science Foundation of China(No.61975029)。
文摘Multifocal metalenses are of great concern in optical communications,optical imaging and micro-optics systems,but their design is extremely challenging.In recent years,deep learning methods have provided novel solutions to the design of optical planar devices.Here,an approach is proposed to explore the use of generative adversarial networks(GANs)to realize the design of metalenses with different focusing positions at dual wavelengths.This approach includes a forward network and an inverse network,where the former predicts the optical response of meta-atoms and the latter generates structures that meet specific requirements.Compared to the traditional search method,the inverse network demonstrates higher precision and efficiency in designing a dual-wavelength bifocal metalens.The results will provide insights and methodologies for the design of tunable wavelength metalenses,while also highlighting the potential of deep learning in optical device design.
基金supported by the National Natural Science Foundation of China(61533019,71232006,91520301)
文摘Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.
基金This work was partially supported by National Key R&D Program of China(2019YFB1312400)Shenzhen Key Laboratory of Robotics Perception and Intelligence(ZDSYS20200810171800001)+1 种基金Hong Kong RGC GRF(14200618)Hong Kong RGC CRF(C4063-18G).
文摘Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20220421)the State Key Program of the National Natural Science Foundation of China(Grant No.42230702)the National Natural Science Foundation of China(Grant No.82302352).
文摘Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas.
基金supported by the Engineering and Physical Sciences Research Council [grant number: EP/N509644/1]。
文摘It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process.
基金the Scientific Research Project of Shanghai Science and Technology Commission(No.18DZ1205603)the Science Research Plan of Shanghai Municipal Science and Technology Committee(No.20DZ1201300)the National Key Research and Development Program of China(No.2017YFC0806100)。
文摘With the increasing demands of health care,the design of hospital buildings has become increasingly demanding and complicated.However,the traditional layout design method for hospital is labor intensive,time consuming and prone to errors.With the development of artificial intelligence(AI),the intelligent design method has become possible and is considered to be suitable for the layout design of hospital buildings.Two intelli-gent design processes based on healthcare systematic layout planning(HSLP)and generative adversarial network(GAN)are proposed in this paper,which aim to solve the generation problem of the plane functional layout of the operating departments(ODs)of general hospitals.The first design method that is more like a mathemati-cal model with traditional optimization algorithm concerns the following two steps:developing the HSLP model based on the conventional systematic layout planning(SLP)theory,identifying the relationship and flows amongst various departments/units,and arriving at the preliminary plane layout design;establishing mathematical model to optimize the building layout by using the genetic algorithm(GA)to obtain the optimized scheme.The specific process of the second intelligent design based on more than 100 sets of collected OD drawings includes:labelling the corresponding functional layouts of each OD plan;building image-to-image translation with conditional ad-versarial network(pix2pix)for training OD plane layouts,which is one of the most representative GAN models.Finally,the functions and features of the results generated by the two methods are analyzed and compared from an architectural and algorithmic perspective.Comparison of the two design methods shows that the HSLP and GAN models can autonomously generate new OD plane functional layouts.The HSLP layouts have clear functional area adjacencies and optimization goals,but the layouts are relatively rigid and not specific enough.The GAN outputs are the most innovative layouts with strong applicability,but the dataset has strict constraints.The goal of this paper is to help release the heavy load of architects in the early design stage and present the effectiveness of these intelligent design methods in the field of medical architecture.
基金Supported by the National Natural Science Foundation of China(No.61501457)National Key Technology R&D Program(No.2015BAK21B00)
文摘Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10.
文摘Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples,and the effectiveness of the loss functions in improving the generating ability of GANs.In this paper,we present a detailed survey for the loss functions used in GANs,and provide a critical analysis on the pros and cons of these loss functions.First,the basic theory of GANs along with the training mechanism are introduced.Then,the most commonly used loss functions in GANs are introduced and analyzed.Third,the experimental analyses and comparison of these loss functions are presented in different GAN architectures.Finally,several suggestions on choosing suitable loss functions for image synthesis tasks are given.
文摘Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immediate demand for clear vision. Recently, in addition to the conventional dehazing mechanisms, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired “in the wild” and how we could gauge the progress in the field. To bridge this gap, this presents a comprehensive study on three single image dehazing state-of-the-art GAN models, such as AOD-Net, cGAN, and DHSGAN. We have experimented using benchmark dataset consisting of both synthetic and real-world hazy images. The obtained results are evaluated both quantitatively and qualitatively. Among these techniques, the DHSGAN gives the best performance.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.61572461,61811530282,61872429,11790301 and 11790305).
文摘With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a single-dish antenna.In contrast from a direct imaging system,an AS telescope captures the Fourier coefficients of a spatial object,and then implement inverse Fourier transform to reconstruct the spatial image.Due to the limited number of antennas,the Fourier coefficients are extremely sparse in practice,resulting in a very blurry image.To remove/reduce blur,“CLEAN”deconvolution has been widely used in the literature.However,it was initially designed for a point source.For an extended source,like the Sun,its efficiency is unsatisfactory.In this study,a deep neural network,referring to Generative Adversarial Network(GAN),is proposed for solar image deconvolution.The experimental results demonstrate that the proposed model is markedly better than traditional CLEAN on solar images.The main purpose of this work is visual inspection instead of quantitative scientific computation.We believe that this will also help scientists to better understand solar phenomena with high quality images.
文摘The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.61977029).
文摘Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for temporal coherence across frames.In this paper,we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network(DD-GAN).The DDGAN comprises a Deep Deconvolutional Neural Network(DDNN)as a Generator(G)and a modified Deep Convolutional Neural Network(DCNN)as a Discriminator(D)to ensure temporal coherence between adjacent frames.The proposed research involves several steps.First,the input text is fed into a Long Short Term Memory(LSTM)based text encoder and then smoothed using Conditioning Augmentation(CA)techniques to enhance the effectiveness of the Generator(G).Next,using a DDNN to generate video frames by incorporating enhanced text and random noise and modifying a DCNN to act as a Discriminator(D),effectively distinguishing between generated and real videos.This research evaluates the quality of the generated videos using standard metrics like Inception Score(IS),Fréchet Inception Distance(FID),Fréchet Inception Distance for video(FID2vid),and Generative Adversarial Metric(GAM),along with a human study based on realism,coherence,and relevance.By conducting experiments on Single-Digit Bouncing MNIST GIFs(SBMG),Two-Digit Bouncing MNIST GIFs(TBMG),and a custom dataset of essential mathematics videos with related text,this research demonstrates significant improvements in both metrics and human study results,confirming the effectiveness of DD-GAN.This research also took the exciting challenge of generating preschool math videos from text,handling complex structures,digits,and symbols,and achieving successful results.The proposed research demonstrates promising results for generating coherent videos from textual input.
基金National Natural Science Foundation of China(Nos.61602398,U19A2083)Science and Technology Department of Hunan Province,China(No.2019GK4007)。
文摘Boundary equilibrium generative adversarial networks(BEGANs)are the improved version of generative adversarial networks(GANs).In this paper,an improved BEGAN with a skip-connection technique in the generator and the discriminator is proposed.Moreover,an alternative time-scale update rule is adopted to balance the learning rate of the generator and the discriminator.Finally,the performance of the proposed method is quantitatively evaluated by Fréchet inception distance(FID)and inception score(IS).The test results show that the performance of the proposed method is better than that of the original BEGAN.
基金This project was funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under Grant No.RG-91-611-42.
文摘Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic.We are using Deep Convolutional Generative Adversarial Networks(DCGAN)to trick the malware classifier to believe it is a normal entity.In this work,a new dataset is created to fool the Artificial Intelligence(AI)based malware detectors,and it consists of different types of attacks such as Denial of Service(DoS),scan 11,scan 44,botnet,spam,User Datagram Portal(UDP)scan,and ssh scan.The discriminator used in the DCGAN discriminates two different attack classes(anomaly and synthetic)and one normal class.The model collapse,instability,and vanishing gradient issues associated with the DCGAN are overcome using the proposed hybrid Aquila optimizer-based Mine blast harmony search algorithm(AO-MBHS).This algorithm helps the generator to create realistic malware samples to be undetected by the discriminator.The performance of the proposed methodology is evaluated using different performance metrics such as training time,detection rate,F-Score,loss function,Accuracy,False alarm rate,etc.The superiority of the hybrid AO-MBHS based DCGAN model is noticed when the detection rate is changed to 0 after the retraining method to make the defensive technique hard to be noticed by the malware detection system.The support vector machines(SVM)is used as the malicious traffic detection application and its True positive rate(TPR)goes from 80%to 0%after retraining the proposed model which shows the efficiency of the proposed model in hiding the samples.
基金supported by Shenzhen Science and Technology Innovation Committee under Grants No. JCYJ20170306170559215 and No. JCYJ20180302153918689。
文摘In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network(DCGAN)and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator(GG)with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise(MSN)method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network.
文摘Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication.This study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network(GAN)based augmentation on diverse datasets,including iSarcasm,SemEval-18,and Ghosh.This research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network(RGAN).The proposed RGAN method works by inverting labels between original and synthetic data during the training process.This inversion of labels provides feedback to the generator for generating high-quality data closely resembling the original distribution.Notably,the proposed RGAN model exhibits performance on par with standard GAN,showcasing its robust efficacy in augmenting text data.The exploration of various datasets highlights the nuanced impact of augmentation on model performance,with cautionary insights into maintaining a delicate balance between synthetic and original data.The methodological framework encompasses comprehensive data pre-processing and GAN-based augmentation,with a meticulous comparison against Natural Language Processing Augmentation(NLPAug)as an alternative augmentation technique.Overall,the F1-score of our proposed technique outperforms that of the synonym replacement augmentation technique using NLPAug.The increase in F1-score in experiments using RGAN ranged from 0.066%to 1.054%,and the use of standard GAN resulted in a 2.88%increase in F1-score.The proposed RGAN model outperformed the NLPAug method and demonstrated comparable performance to standard GAN,emphasizing its efficacy in text data augmentation.
基金funded by the Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project ofKey Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this paper,we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network(GAN).The generated tile images can be tailored to meet the specific needs of the user for the tile textures.The proposed method consists of four steps.Firstly,a dataset of ceramic tile images with diverse distributions is created and then pre-trained based on GAN.Secondly,for each ceramic tile image in the dataset,the corresponding sketch image is generated and then the mapping relationship between the images is trained based on a sketch extraction network using ResNet Block and jump connection to improve the quality of the generated sketches.Thirdly,the sketch style is redefined according to the characteristics of the ceramic tile images and then double cross-domain adversarial loss functions are employed to guide the ceramic tile generation network for fitting in the direction of the sketch style and to improve the training speed.Finally,we apply hidden space perturbation and interpolation for further enriching the output textures style and satisfying the concept of“one style with multiple faces”.We conduct the training process of the proposed generation network on 2583 ceramic tile images dataset.To measure the generative diversity and quality,we use Frechet Inception Distance(FID)and Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)metrics.The experimental results prove that the proposed model greatly enhances the generation results of the ceramic tile images,with FID of 32.47 and BRISQUE of 28.44.