Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been s...Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.展开更多
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ...Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.展开更多
Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse ...Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse service requirements,6G network architecture should offer personalized services to various mobile devices.Federated learning(FL)with personalized local training,as a privacypreserving machine learning(ML)approach,can be applied to address these challenges.In this paper,we propose a meta-learning-based personalized FL(PFL)method that improves both communication and computation efficiency by utilizing over-the-air computations.Its“pretraining-and-fine-tuning”principle makes it particularly suitable for enabling edge nodes to access personalized GAI services while preserving local privacy.Experiment results demonstrate the outperformance and efficacy of the proposed algorithm,and notably indicate enhanced communication efficiency without compromising accuracy.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act ...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors.展开更多
Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involv...Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs.展开更多
Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potentia...Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potential of fractals in traditional textile design,a fractal-based generative framework was proposed for efficiently creating drawnwork patterns suitable for practical handicraft production.The research was initiated with an analysis of the structural composition of center,skeleton,and filler motifs extracted from a pattern sample library.Based on this hierarchical classification,the box-counting method was employed to calculate their respective fractal dimensions.Building on fractal art theory,generative algorithms,and studies on the application of Ultra Fractal,a Chaoshan drawnwork fractal design model was established.Using this model,51 drawnwork fractal patterns and 153 handkerchief patterns were generated.These patterns were subsequently applied in real-world production to validate the feasibility and value of fractal techniques in textile design.展开更多
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
Steganography is a technology that discreetly embeds secret information into the redundant space of a carrier,enabling covert communication.As generative models continue to advance,steganography has evolved from tradi...Steganography is a technology that discreetly embeds secret information into the redundant space of a carrier,enabling covert communication.As generative models continue to advance,steganography has evolved from traditional modification-based methods to generative steganography,which includes generative linguistic and image based forms.However,while large model agents are rapidly emerging,no method has exploited the stable redundant space in their action processes.Inspired by this insightful observation,we propose a steganographic method leveraging large model agents,employing their actions to conceal secret messages.In this paper,we introduce StegoAgent,a generative steganography framework based on graphical user interface(GUI)agents,which effectively demonstrates the remarkable potential and effectiveness of large model agent-based steganographic methods.展开更多
With the rapid development of generative artificial intelligence(AI)technology in the field of education,global educational systems are facing unprecedented opportunities and challenges,urgently requiring the establis...With the rapid development of generative artificial intelligence(AI)technology in the field of education,global educational systems are facing unprecedented opportunities and challenges,urgently requiring the establishment of comprehensive,flexible,and forward-looking governance solutions.The“Australian Framework for Generative AI in Schools”builds a multi-dimensional governance system covering aspects such as teaching and humanistic care,fairness and transparency,and accountability and security.Based on 22 specific principles and six core elements,it emphasizes a human-centered design concept,adopts a principle-based flexible structure,focuses on fairness and transparency,and stresses accountability and security.The framework provides valuable references for the use of generative AI in China’s education system and holds significant importance for promoting educational modernization and cultivating innovative talents adapted to the era of artificial intelligence.展开更多
Currently,the transformation and upgrading of digitalization have become a new task that enterprises urgently need to address.To further enhance the leadership of enterprise leaders,relevant enterprise staff should fa...Currently,the transformation and upgrading of digitalization have become a new task that enterprises urgently need to address.To further enhance the leadership of enterprise leaders,relevant enterprise staff should face up to the infinite possibilities that generative AI brings to enterprise management.Based on this,this paper will briefly analyze the value connotation of generative AI empowering the improvement of enterprise leadership and the relevant influencing factors,and discuss the strategies for enhancing enterprise leadership in the generative AI era,in order to promote the smooth progress of enterprises’digital transformation and upgrading.展开更多
In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In t...In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In the development of MS-GAN,we extend the freeform deformation by incorporating principal component analysis to increase the non-linear deformation ability while maintaining geometric smoothness.The implicit information of multiple baselines is embedded in the feature extraction layers,to enhance the diversity and parameterization of multi-species dataset.Furthermore,Wasserstein GAN with a gradient penalty is used to ensure the stability and convergence of the training networks.Two experiments,ruled surfaces and propeller blade surfaces,are performed to demonstrate the advantages and superiorities of MS-GAN.展开更多
This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curric...This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curricula,it elucidates its advantages and operational mechanisms in interdisciplinary PBL.Combining case studies and empirical research,the investigation proposes implementation pathways and strategies for the generative AI-enhanced interdisciplinary PBL model,detailing specific applications across three phases:project preparation,implementation,and evaluation.The research demonstrates that generative AI-enabled interdisciplinary project-based learning can effectively enhance students’learning motivation,interdisciplinary thinking capabilities,and innovative competencies,providing new conceptual frameworks and practical approaches for educational model innovation.展开更多
In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analy...In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analyzing the efficient control of mechatronic systems enabled by generative AI for single-chip microcomputers can further highlight the value and significance of promoting AI technology applications.This paper examines the technical characteristics of generative AI in data generation,multimodal fusion,and dynamic adaptation,proposing lightweight model deployment strategies that compress large generative models to a range compatible with single-chip microcomputers,ensuring local real-time inference capabilities.It constructs an edge intelligent control architecture,enabling generative AI to directly participate in decision-making instruction generation,forming a new working system of perception,decision-making,and execution.Additionally,it designs a collaborative optimization training mechanism that leverages federated learning to overcome single-machine data limitations and enhance model generalization performance.At the application level,an intelligent fault prediction system is developed for early identification of equipment anomalies,an adaptive parameter optimization module is constructed for dynamically adjusting control strategies,and a multi-device collaborative scheduling engine is established to optimize production processes,providing technical support for embedded intelligent control in Industry 4.0 scenarios.展开更多
This study aims to identify the key factors influencing the adoption of generative AI(GenAI)by Vietnamese banks and highlight the challenges and opportunities in digital transformation.It extends the technology-organi...This study aims to identify the key factors influencing the adoption of generative AI(GenAI)by Vietnamese banks and highlight the challenges and opportunities in digital transformation.It extends the technology-organization-environment(TOE)framework to incorporate GenAI-specific factors in the Vietnamese banking sector,characterized by rapid digitization and stringent regulations.A survey yielded 236 valid responses.The data were analyzed via partial least squares structural equation modeling(PLSSEM).The key factors identified include organizational readiness(OR),compatibility(CPT),competitive pressure(CP),complexity(CPL),relative advantage(RA),firm size(FS),and government support(GS).OR emerged as the most influential factor because of a robust IT infrastructure and skilled personnel.CPT and CP were also significant,driving banks to adopt GenAI for a competitive edge.However,CPL presents challenges,requiring simpler AI solutions and clear risk mitigation policies.This study enhances the understanding of GenAI adoption within the Vietnamese banking sector,emphasizing the importance of tailored strategies for different bank sizes and the critical role of technology readiness for effective integration.The findings provide actionable insights into banks navigating their digital transformation journeys.展开更多
The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper...The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper proposes an architecture that integrates speech prompts as input to image-generation Generative Adversarial Networks(GANs)model,leveraging Speech-to-Text translation along with the CLIP+VQGAN model.The proposed method involves translating speech prompts into text,which is then used by the Contrastive Language-Image Pretraining(CLIP)+Vector Quantized Generative Adversarial Network(VQGAN)model to generate images.This paper outlines the steps required to implement such a model and describes in detail the methods used for evaluating the model.The GAN model successfully generates artwork from descriptions using speech and text prompts.Experimental outcomes of synthesized images demonstrate that the proposed methodology can produce beautiful abstract visuals containing elements from the input prompts.The model achieved a Frechet Inception Distance(FID)score of 28.75,showcasing its capability to produce high-quality and diverse images.The proposed model can find numerous applications in educational,artistic,and design spaces due to its ability to generate images using speech and the distinct abstract artistry of the output images.This capability is demonstrated by giving the model out-of-the-box prompts to generate never-before-seen images with plausible realistic qualities.展开更多
Catalysis has made great contributions to the productivity of human society. Therefore, the pursuit of new catalysts and research on catalytic processes has never stopped. Continuous and in-depth catalysis research si...Catalysis has made great contributions to the productivity of human society. Therefore, the pursuit of new catalysts and research on catalytic processes has never stopped. Continuous and in-depth catalysis research significantly increases the complexity of dynamic systems and multivariate optimization, thus posing higher challenges to research methodologies. Recently, the significant advancement of generative artificial intelligence (AI) provides new opportunities for catalysis research. Different from traditional discriminative AI, this state-of-the-art technique generates new samples based on existing data and accumulated knowledge, which endows it with attractive potential for catalysis research — a field featuring a vast exploration space, diverse data types and complex mapping relationships. Generative AI can greatly enhance both the efficiency and innovation capacity of catalysis research, subsequently fostering new scientific paradigms. This perspective covers the basic introduction, unique advantages of this powerful tool, and presents cases of generative AI implemented in various catalysis researches, including catalyst design and optimization, characterization technique enhancement and guidance for new research paradigms. These examples highlight its exceptional efficiency and general applicability. We further discuss the practical challenges in implementation and future development perspectives, ultimately aiming to promote better applications of generative AI in catalysis.展开更多
Objectives Nurses’clinical research activities have contributed to optimizing the care process and improving patient outcomes,and generative artificial intelligence(GAI)may help clinical nurses strengthen their resea...Objectives Nurses’clinical research activities have contributed to optimizing the care process and improving patient outcomes,and generative artificial intelligence(GAI)may help clinical nurses strengthen their research skills.To support research,this study aimed to explore the Chinese nurses’perceptions and experiences of GAI training.Methods This study used a descriptive qualitative design.The China Nurses Network conducted a three-day training session on“GAI for Nursing Research”theme,we selected 23 nurses by a convenience sampling method among participating in the training.The researchers conducted three focus group interviews at the end of each day.All focus groups were interviewed face-to-face to facilitate interaction,data collection,and observation.The data were analyzed using conventional content analysis and coded manually.Results The results showed that nurses’use of GAI to support scientific research was dynamic and characterized by evolving perceptions and practices.Four themes and 11 sub-themes emerged from the analysis:1)utilization efficacy:cope with research ability,affected by many factors;2)booster research:growth and challenges go hand in hand;3)role reversal:from GAI-dominated to nurse-dominated;4)beautiful dream:more features on research,more assistants on clinical care.Conclusions The effectiveness of GAI in supporting clinical nurses in conducting research is mainly limited by differences in personal research literacy,lack of ethical regulation,and information accuracy.In the future,it is necessary to improve nurses’relevant skills through specialized training and promote the standardization of technical regulations to ensure the appropriate application of GAI in nursing research.展开更多
Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process...Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging.展开更多
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin...Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.展开更多
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金National Natural Science Foundation of China(Nos.4210144242394063).
文摘Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.
基金supported by the Yonsei University graduate school Department of Integrative Biotechnology.
文摘Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design.
基金supported in part by the National Key R&D Program of China under Grant 2024YFE0200700in part by the National Natural Science Foundation of China under Grant 62201504.
文摘Network architectures assisted by Generative Artificial Intelligence(GAI)are envisioned as foundational elements of sixth-generation(6G)communication system.To deliver ubiquitous intelligent services and meet diverse service requirements,6G network architecture should offer personalized services to various mobile devices.Federated learning(FL)with personalized local training,as a privacypreserving machine learning(ML)approach,can be applied to address these challenges.In this paper,we propose a meta-learning-based personalized FL(PFL)method that improves both communication and computation efficiency by utilizing over-the-air computations.Its“pretraining-and-fine-tuning”principle makes it particularly suitable for enabling edge nodes to access personalized GAI services while preserving local privacy.Experiment results demonstrate the outperformance and efficacy of the proposed algorithm,and notably indicate enhanced communication efficiency without compromising accuracy.
基金supported by Interdisciplinary Innova-tion Project of“Bioarchaeology Laboratory”of Jilin University,China,and“MedicineþX”Interdisciplinary Innovation Team of Norman Bethune Health Science Center of Jilin University,China(Grant No.:2022JBGS05).
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222508 and 52335011)。
文摘Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs.
文摘Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potential of fractals in traditional textile design,a fractal-based generative framework was proposed for efficiently creating drawnwork patterns suitable for practical handicraft production.The research was initiated with an analysis of the structural composition of center,skeleton,and filler motifs extracted from a pattern sample library.Based on this hierarchical classification,the box-counting method was employed to calculate their respective fractal dimensions.Building on fractal art theory,generative algorithms,and studies on the application of Ultra Fractal,a Chaoshan drawnwork fractal design model was established.Using this model,51 drawnwork fractal patterns and 153 handkerchief patterns were generated.These patterns were subsequently applied in real-world production to validate the feasibility and value of fractal techniques in textile design.
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62472398 and U2336206.
文摘Steganography is a technology that discreetly embeds secret information into the redundant space of a carrier,enabling covert communication.As generative models continue to advance,steganography has evolved from traditional modification-based methods to generative steganography,which includes generative linguistic and image based forms.However,while large model agents are rapidly emerging,no method has exploited the stable redundant space in their action processes.Inspired by this insightful observation,we propose a steganographic method leveraging large model agents,employing their actions to conceal secret messages.In this paper,we introduce StegoAgent,a generative steganography framework based on graphical user interface(GUI)agents,which effectively demonstrates the remarkable potential and effectiveness of large model agent-based steganographic methods.
基金2024 Undergraduate Innovation Training Program Project“Research on the Current Situation,Impact and Management Countermeasures of Generative AI in College Students’Learning”(202410065153)。
文摘With the rapid development of generative artificial intelligence(AI)technology in the field of education,global educational systems are facing unprecedented opportunities and challenges,urgently requiring the establishment of comprehensive,flexible,and forward-looking governance solutions.The“Australian Framework for Generative AI in Schools”builds a multi-dimensional governance system covering aspects such as teaching and humanistic care,fairness and transparency,and accountability and security.Based on 22 specific principles and six core elements,it emphasizes a human-centered design concept,adopts a principle-based flexible structure,focuses on fairness and transparency,and stresses accountability and security.The framework provides valuable references for the use of generative AI in China’s education system and holds significant importance for promoting educational modernization and cultivating innovative talents adapted to the era of artificial intelligence.
文摘Currently,the transformation and upgrading of digitalization have become a new task that enterprises urgently need to address.To further enhance the leadership of enterprise leaders,relevant enterprise staff should face up to the infinite possibilities that generative AI brings to enterprise management.Based on this,this paper will briefly analyze the value connotation of generative AI empowering the improvement of enterprise leadership and the relevant influencing factors,and discuss the strategies for enhancing enterprise leadership in the generative AI era,in order to promote the smooth progress of enterprises’digital transformation and upgrading.
基金support of the National Natural Science Foundation of China(No.12372221)is acknowledged.
文摘In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In the development of MS-GAN,we extend the freeform deformation by incorporating principal component analysis to increase the non-linear deformation ability while maintaining geometric smoothness.The implicit information of multiple baselines is embedded in the feature extraction layers,to enhance the diversity and parameterization of multi-species dataset.Furthermore,Wasserstein GAN with a gradient penalty is used to ensure the stability and convergence of the training networks.Two experiments,ruled surfaces and propeller blade surfaces,are performed to demonstrate the advantages and superiorities of MS-GAN.
文摘This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curricula,it elucidates its advantages and operational mechanisms in interdisciplinary PBL.Combining case studies and empirical research,the investigation proposes implementation pathways and strategies for the generative AI-enhanced interdisciplinary PBL model,detailing specific applications across three phases:project preparation,implementation,and evaluation.The research demonstrates that generative AI-enabled interdisciplinary project-based learning can effectively enhance students’learning motivation,interdisciplinary thinking capabilities,and innovative competencies,providing new conceptual frameworks and practical approaches for educational model innovation.
基金Single-Chip Microcomputer and Interface Technology Project(Project No.:SYSJ2025032)。
文摘In recent years,research on industrial innovation and development has primarily focused on industrial automation and intelligent manufacturing.Within the field of integrating mechatronics and intelligent control,analyzing the efficient control of mechatronic systems enabled by generative AI for single-chip microcomputers can further highlight the value and significance of promoting AI technology applications.This paper examines the technical characteristics of generative AI in data generation,multimodal fusion,and dynamic adaptation,proposing lightweight model deployment strategies that compress large generative models to a range compatible with single-chip microcomputers,ensuring local real-time inference capabilities.It constructs an edge intelligent control architecture,enabling generative AI to directly participate in decision-making instruction generation,forming a new working system of perception,decision-making,and execution.Additionally,it designs a collaborative optimization training mechanism that leverages federated learning to overcome single-machine data limitations and enhance model generalization performance.At the application level,an intelligent fault prediction system is developed for early identification of equipment anomalies,an adaptive parameter optimization module is constructed for dynamically adjusting control strategies,and a multi-device collaborative scheduling engine is established to optimize production processes,providing technical support for embedded intelligent control in Industry 4.0 scenarios.
文摘This study aims to identify the key factors influencing the adoption of generative AI(GenAI)by Vietnamese banks and highlight the challenges and opportunities in digital transformation.It extends the technology-organization-environment(TOE)framework to incorporate GenAI-specific factors in the Vietnamese banking sector,characterized by rapid digitization and stringent regulations.A survey yielded 236 valid responses.The data were analyzed via partial least squares structural equation modeling(PLSSEM).The key factors identified include organizational readiness(OR),compatibility(CPT),competitive pressure(CP),complexity(CPL),relative advantage(RA),firm size(FS),and government support(GS).OR emerged as the most influential factor because of a robust IT infrastructure and skilled personnel.CPT and CP were also significant,driving banks to adopt GenAI for a competitive edge.However,CPL presents challenges,requiring simpler AI solutions and clear risk mitigation policies.This study enhances the understanding of GenAI adoption within the Vietnamese banking sector,emphasizing the importance of tailored strategies for different bank sizes and the critical role of technology readiness for effective integration.The findings provide actionable insights into banks navigating their digital transformation journeys.
基金funded by the Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),Faculty of Engineering and IT,University of Technology SydneyMoreover,supported by the Researchers Supporting Project,King Saud University,Riyadh,Saudi Arabia,under Ongoing Research Funding(ORF-2025-14).
文摘The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper proposes an architecture that integrates speech prompts as input to image-generation Generative Adversarial Networks(GANs)model,leveraging Speech-to-Text translation along with the CLIP+VQGAN model.The proposed method involves translating speech prompts into text,which is then used by the Contrastive Language-Image Pretraining(CLIP)+Vector Quantized Generative Adversarial Network(VQGAN)model to generate images.This paper outlines the steps required to implement such a model and describes in detail the methods used for evaluating the model.The GAN model successfully generates artwork from descriptions using speech and text prompts.Experimental outcomes of synthesized images demonstrate that the proposed methodology can produce beautiful abstract visuals containing elements from the input prompts.The model achieved a Frechet Inception Distance(FID)score of 28.75,showcasing its capability to produce high-quality and diverse images.The proposed model can find numerous applications in educational,artistic,and design spaces due to its ability to generate images using speech and the distinct abstract artistry of the output images.This capability is demonstrated by giving the model out-of-the-box prompts to generate never-before-seen images with plausible realistic qualities.
基金supported by the National Natural Science Foundation of China(T2441001)the National Key Research&Development Program of China(2023YFB4104503).
文摘Catalysis has made great contributions to the productivity of human society. Therefore, the pursuit of new catalysts and research on catalytic processes has never stopped. Continuous and in-depth catalysis research significantly increases the complexity of dynamic systems and multivariate optimization, thus posing higher challenges to research methodologies. Recently, the significant advancement of generative artificial intelligence (AI) provides new opportunities for catalysis research. Different from traditional discriminative AI, this state-of-the-art technique generates new samples based on existing data and accumulated knowledge, which endows it with attractive potential for catalysis research — a field featuring a vast exploration space, diverse data types and complex mapping relationships. Generative AI can greatly enhance both the efficiency and innovation capacity of catalysis research, subsequently fostering new scientific paradigms. This perspective covers the basic introduction, unique advantages of this powerful tool, and presents cases of generative AI implemented in various catalysis researches, including catalyst design and optimization, characterization technique enhancement and guidance for new research paradigms. These examples highlight its exceptional efficiency and general applicability. We further discuss the practical challenges in implementation and future development perspectives, ultimately aiming to promote better applications of generative AI in catalysis.
基金supported by a grant from the National Natural Science Foundation of China(No.72174130)。
文摘Objectives Nurses’clinical research activities have contributed to optimizing the care process and improving patient outcomes,and generative artificial intelligence(GAI)may help clinical nurses strengthen their research skills.To support research,this study aimed to explore the Chinese nurses’perceptions and experiences of GAI training.Methods This study used a descriptive qualitative design.The China Nurses Network conducted a three-day training session on“GAI for Nursing Research”theme,we selected 23 nurses by a convenience sampling method among participating in the training.The researchers conducted three focus group interviews at the end of each day.All focus groups were interviewed face-to-face to facilitate interaction,data collection,and observation.The data were analyzed using conventional content analysis and coded manually.Results The results showed that nurses’use of GAI to support scientific research was dynamic and characterized by evolving perceptions and practices.Four themes and 11 sub-themes emerged from the analysis:1)utilization efficacy:cope with research ability,affected by many factors;2)booster research:growth and challenges go hand in hand;3)role reversal:from GAI-dominated to nurse-dominated;4)beautiful dream:more features on research,more assistants on clinical care.Conclusions The effectiveness of GAI in supporting clinical nurses in conducting research is mainly limited by differences in personal research literacy,lack of ethical regulation,and information accuracy.In the future,it is necessary to improve nurses’relevant skills through specialized training and promote the standardization of technical regulations to ensure the appropriate application of GAI in nursing research.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12122403 and 12327807).
文摘Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging.
基金supported by Shanghai Science and Technology Commission Project(No.21DZ1201502)Shanghai Municipal Bureau of Ecology and Environment(Shanghai Environ-mental Science[2023]No.40)+1 种基金the Interdisciplinary Joint Research Project of Tongji University(No.2022-4-YB-12)Shanghai Science and Technology Commission Project(No.22DZ2200200).
文摘Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.