The main goal of this paper is to determine the accurate values of two parameters namely the surface generation–recombination rate and the average total number of electrons density generated in the i-region. These va...The main goal of this paper is to determine the accurate values of two parameters namely the surface generation–recombination rate and the average total number of electrons density generated in the i-region. These values will enhance the performance of quantum dot solar cells(QDSCs). In order to determine these values, this paper concentrates on the optical generation lifetime, the recombination lifetime, and the effective density state in QDs. Furthermore, these parameters are studied in relation with the average total number of electrons density. The values of the surface generation–recombination rate are found to be negative, which implies that the generation process is dominant in the absorption quantum dot region. Consequently, induced photocurrent density relation with device parameters is determined. The results ensure that QDSCs can have higher response photocurrent and then improve the power conversion efficiency. Moreover, the peak value of the average total number of electrons density is achieved at the UV range and is extended to the visible range, which is adequate for space and ground solar applications.展开更多
Silicon junction field effect transistors(JFETs) have been exposed to Co-(60)-rays to study radiationinduced effects on their dc characteristics and noise. The devices have been irradiated and measured at room tem...Silicon junction field effect transistors(JFETs) have been exposed to Co-(60)-rays to study radiationinduced effects on their dc characteristics and noise. The devices have been irradiated and measured at room temperature up to an accumulated 100 krad(Si) dose of radiation at a dose rate of 0.1 rad(Si)/s. During irradiation,the generation–recombination(g–r) noise increase has been observed while the dc characteristics of the transistors were kept unchanged. The increasing of the density of the same type point defects and their probability of trapping and detrapping carriers caused by irradiation have been used to explain the g–r noise amplitude increase, while the g–r noise characteristic frequency has only a slight change.展开更多
文摘The main goal of this paper is to determine the accurate values of two parameters namely the surface generation–recombination rate and the average total number of electrons density generated in the i-region. These values will enhance the performance of quantum dot solar cells(QDSCs). In order to determine these values, this paper concentrates on the optical generation lifetime, the recombination lifetime, and the effective density state in QDs. Furthermore, these parameters are studied in relation with the average total number of electrons density. The values of the surface generation–recombination rate are found to be negative, which implies that the generation process is dominant in the absorption quantum dot region. Consequently, induced photocurrent density relation with device parameters is determined. The results ensure that QDSCs can have higher response photocurrent and then improve the power conversion efficiency. Moreover, the peak value of the average total number of electrons density is achieved at the UV range and is extended to the visible range, which is adequate for space and ground solar applications.
基金Project supported by the National Natural Science Foundation of China(Nos.61076101,61204092)the Fundamental Research Funds for the Central Universities(No.JB150412)
文摘Silicon junction field effect transistors(JFETs) have been exposed to Co-(60)-rays to study radiationinduced effects on their dc characteristics and noise. The devices have been irradiated and measured at room temperature up to an accumulated 100 krad(Si) dose of radiation at a dose rate of 0.1 rad(Si)/s. During irradiation,the generation–recombination(g–r) noise increase has been observed while the dc characteristics of the transistors were kept unchanged. The increasing of the density of the same type point defects and their probability of trapping and detrapping carriers caused by irradiation have been used to explain the g–r noise amplitude increase, while the g–r noise characteristic frequency has only a slight change.