Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing ...Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.展开更多
In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized...In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.展开更多
Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coeffi...Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.展开更多
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmet...Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmetric solitons upon assigning appropriate values to some parameters.Furthermore,a double-peaked lump solution can be constructed with breather degeneration approach.By applying a mixed technique of a resonance ansatz and conjugate complexes of partial parameters to multisoliton solutions,various kinds of interactional structures are constructed;There include the soliton molecule(SM),the breather molecule(BM)and the soliton-breather molecule(SBM).Graphical investigation and theoretical analysis show that the interactions composed of SM,BM and SBM are inelastic.展开更多
Under investigation in this paper is a generalized(3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics.Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear met...Under investigation in this paper is a generalized(3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics.Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear method and Hirota-Riemann method.Magnitude and velocity of the one soliton are derived.Graphs are presented to discuss the solitons and one-periodic waves:the coefficients in the equation can determine the velocity components of the one soliton,but cannot alter the soliton magnitude;the interaction between the two solitons is elastic;the coefficients in the equation can influence the periods and velocities of the periodic waves.Relation between the one-soliton solution and one-periodic wave solution is investigated.展开更多
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial d...Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.展开更多
With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation ...With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation is proposed by introducing suitable auxiliary variables. In addition, the interaction solutions of the(3+1)-dimensional gKP equation are constructed via the consistent Riccati expansion method. Particularly, some analytical soliton-cnoidal interaction solutions are discussed in graphical way.展开更多
Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kau...Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps,breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.展开更多
The(2 + 1)-dimensional Ito equation is extended to a general form including some nonintegrable effects via introducing generalized bilinear operators. It is pointed out that the nonintegrable(2 + 1)-dimensional Ito eq...The(2 + 1)-dimensional Ito equation is extended to a general form including some nonintegrable effects via introducing generalized bilinear operators. It is pointed out that the nonintegrable(2 + 1)-dimensional Ito equation contains lump solutions and interaction solutions between lump and stripe solitons. The result shows that the lump soliton will be swallowed or arisen by a stripe soliton in a fixed time. Furthermore, by the interaction between a lump and a paired resonant stripe soliton, the lump will be transformed to an instanton or a rogue wave.展开更多
In this paper,we study the mixed-type reverse order laws to{1,3,4}-inverses for closed range operators A,B and AB.It is shown that B{1,3,4}A{1,3,4}∈(AB){1,3}if and only if R(A*AB)∈R(B).For every A^((134))∈A{1,3,4},...In this paper,we study the mixed-type reverse order laws to{1,3,4}-inverses for closed range operators A,B and AB.It is shown that B{1,3,4}A{1,3,4}∈(AB){1,3}if and only if R(A*AB)∈R(B).For every A^((134))∈A{1,3,4},it has(A^((134))AB){1,3,4}A{1,3,4}=(AB){1,3,4}if and only if R(AA*AB)R(AB).As an application of our results,some new characterizations of the mixed-type reverse order laws associated to the Moore-Penrose inverse and the{1,3,4}-inverse are established.展开更多
In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation w...In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.展开更多
This note is a contribution to the application of generalized inverse of homomorphisms of modules in ring(module)theory.Using the{1}-and{2}-inverses of homomorphisms of modules,we characterize a class of rings and an ...This note is a contribution to the application of generalized inverse of homomorphisms of modules in ring(module)theory.Using the{1}-and{2}-inverses of homomorphisms of modules,we characterize a class of rings and an important class of modules respectively.展开更多
The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of ...The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.展开更多
In this paper, the(3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev–Petviashvili hierarchy reduction, we obtain the first-o...In this paper, the(3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev–Petviashvili hierarchy reduction, we obtain the first-order,higher-order, multiple rogue waves and lump solitons based on the solutions in terms of the Gramian. The first-order rogue waves are the line rogue waves which arise from the constant background and then disappear into the constant background again, while the first-order lump solitons propagate stably. Interactions among several first-order rogue waves which are described by the multiple rogue waves are presented. Elastic interactions of several first-order lump solitons are also presented. We find that the higher-order rogue waves and lump solitons can be treated as the superpositions of several first-order ones, while the interaction between the second-order lump solitons is inelastic.展开更多
In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burge...In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burgers equations with variable coetticients. Many exact solutions of the equations are obtained in terms of elliptic functions, hyperbolic functions, trigonometric functions, and rational functions.展开更多
In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tio...In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tion, is first introduced by means of the Wiess, Tabor, Carnevale (WTC) truncation method. And then multi- symplectic formulations with several conservation laws taken into account are presented for the generalized (2+1)- dimensional KdV-mKdV equation based on the multi- symplectic theory of Bridges. Subsequently, in order to simulate the periodic wave solutions in terms of rational functions of the Jacobi elliptic functions derived from thegeneral solution, a semi-implicit multi-symplectic scheme is constructed that is equivalent 1:o the Preissmann scheme. From the results of the numerical experiments, we can con- clude that the multi-symplectic schemes can accurately sim- ulate the periodic wave solutions of the generalized (2+1)- dimensional KdV-mKdV equation while preserve approxi- mately the conservation laws.展开更多
基金financially supported by the Scientific Research Foundation of North China University of Technology (Grant Nos.11005136024XN147-87 and 110051360024XN151-86)。
文摘Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2013QNA41Natural Sciences Foundation of China under Grant Nos.11301527 and 11371361the Construction Project of the Key Discipline in Universities for 12th Five-year Plans by Jiangsu Province
文摘In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505154,11605156,11775146,and 11975204)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ16A010003 and LY19A050003)+5 种基金the China Scholarship Council(Grant No.201708330479)the Foundation for Doctoral Program of Zhejiang Ocean University(Grant No.Q1511)the Natural Science Foundation(Grant No.DMS-1664561)the Distinguished Professorships by Shanghai University of Electric Power(China)North-West University(South Africa)King Abdulaziz University(Saudi Arabia)
文摘Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
基金Supported by the National Natural Science Foundation of China(12001424)the Natural Science Basic Research Program of Shaanxi Province(2021JZ-21)the Fundamental Research Funds for the Central Universities(2020CBLY013)。
文摘Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmetric solitons upon assigning appropriate values to some parameters.Furthermore,a double-peaked lump solution can be constructed with breather degeneration approach.By applying a mixed technique of a resonance ansatz and conjugate complexes of partial parameters to multisoliton solutions,various kinds of interactional structures are constructed;There include the soliton molecule(SM),the breather molecule(BM)and the soliton-breather molecule(SBM).Graphical investigation and theoretical analysis show that the interactions composed of SM,BM and SBM are inelastic.
基金supported by the National Natural Science Foundation of China under Grant No.11272023by the Fundamental Research Funds for the Central Universities under Grant No.50100002016105010。
文摘Under investigation in this paper is a generalized(3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics.Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear method and Hirota-Riemann method.Magnitude and velocity of the one soliton are derived.Graphs are presented to discuss the solitons and one-periodic waves:the coefficients in the equation can determine the velocity components of the one soliton,but cannot alter the soliton magnitude;the interaction between the two solitons is elastic;the coefficients in the equation can influence the periods and velocities of the periodic waves.Relation between the one-soliton solution and one-periodic wave solution is investigated.
基金Supported by the National Natural Science Foundation of China under Grant No.11171312
文摘Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11835011 and 12074343)。
文摘With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation is proposed by introducing suitable auxiliary variables. In addition, the interaction solutions of the(3+1)-dimensional gKP equation are constructed via the consistent Riccati expansion method. Particularly, some analytical soliton-cnoidal interaction solutions are discussed in graphical way.
基金supported by the National Natural Science Foundation of China (project Nos. 11371086,11671258,11975145)the Fund of Science and Technology Commission of Shanghai Municipality (project No. 13ZR1400100)the Fund of Donghua University,Institute for Nonlinear Sciences and the Fundamental Research Funds for the Central Universities。
文摘Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps,breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.
基金Supported by the National Natural Science Foundation of China under Grant No.1143505sponsored by K.C.Wong Magna Fund in Ningbo University
文摘The(2 + 1)-dimensional Ito equation is extended to a general form including some nonintegrable effects via introducing generalized bilinear operators. It is pointed out that the nonintegrable(2 + 1)-dimensional Ito equation contains lump solutions and interaction solutions between lump and stripe solitons. The result shows that the lump soliton will be swallowed or arisen by a stripe soliton in a fixed time. Furthermore, by the interaction between a lump and a paired resonant stripe soliton, the lump will be transformed to an instanton or a rogue wave.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1150134511671261)the Youth Backbone Teacher Training Program of Henan Province(Grant No.2017GGJS140)
文摘In this paper,we study the mixed-type reverse order laws to{1,3,4}-inverses for closed range operators A,B and AB.It is shown that B{1,3,4}A{1,3,4}∈(AB){1,3}if and only if R(A*AB)∈R(B).For every A^((134))∈A{1,3,4},it has(A^((134))AB){1,3,4}A{1,3,4}=(AB){1,3,4}if and only if R(AA*AB)R(AB).As an application of our results,some new characterizations of the mixed-type reverse order laws associated to the Moore-Penrose inverse and the{1,3,4}-inverse are established.
基金Supported by the National Natural Science Foundation of China(11471004,11501498)Shaanxi Key Research and Development Programs(2018SF-251)the Research Project at Yuncheng University [XK2012007]
文摘In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.
文摘This note is a contribution to the application of generalized inverse of homomorphisms of modules in ring(module)theory.Using the{1}-and{2}-inverses of homomorphisms of modules,we characterize a class of rings and an important class of modules respectively.
文摘The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11772017,11272023,and 11471050by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(IPOC:2017ZZ05)by the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘In this paper, the(3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev–Petviashvili hierarchy reduction, we obtain the first-order,higher-order, multiple rogue waves and lump solitons based on the solutions in terms of the Gramian. The first-order rogue waves are the line rogue waves which arise from the constant background and then disappear into the constant background again, while the first-order lump solitons propagate stably. Interactions among several first-order rogue waves which are described by the multiple rogue waves are presented. Elastic interactions of several first-order lump solitons are also presented. We find that the higher-order rogue waves and lump solitons can be treated as the superpositions of several first-order ones, while the interaction between the second-order lump solitons is inelastic.
基金Supported by the Natural Science Foundation of Shandong Province under Grant Nos.Q2005A01 and Y2007G64
文摘In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burgers equations with variable coetticients. Many exact solutions of the equations are obtained in terms of elliptic functions, hyperbolic functions, trigonometric functions, and rational functions.
基金supported by the National Natural Science Foundation of China (11002115,10972182,11172239)the Science Foundation of Aviation of China (2010ZB53021)+5 种基金the China Postdoctoral Science Special Foundation (201003682)111 project(B07050) to the Northwestern Polytechnical Universitythe NPU Foundation for Fundamental Research (JC200938,JC20110259)the Doctoral Program Foundation of Education Ministry of China(20106102110019)the Open Foundation of State Key Laboratory of Mechanical System & Vibration (MSV-2011-21)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (GZ0802)
文摘In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tion, is first introduced by means of the Wiess, Tabor, Carnevale (WTC) truncation method. And then multi- symplectic formulations with several conservation laws taken into account are presented for the generalized (2+1)- dimensional KdV-mKdV equation based on the multi- symplectic theory of Bridges. Subsequently, in order to simulate the periodic wave solutions in terms of rational functions of the Jacobi elliptic functions derived from thegeneral solution, a semi-implicit multi-symplectic scheme is constructed that is equivalent 1:o the Preissmann scheme. From the results of the numerical experiments, we can con- clude that the multi-symplectic schemes can accurately sim- ulate the periodic wave solutions of the generalized (2+1)- dimensional KdV-mKdV equation while preserve approxi- mately the conservation laws.