A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power...A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.展开更多
In this paper,we offer a new sparse recovery strategy based on the generalized error function.The introduced penalty function involves both the shape and the scale parameters,making it extremely flexible.For both cons...In this paper,we offer a new sparse recovery strategy based on the generalized error function.The introduced penalty function involves both the shape and the scale parameters,making it extremely flexible.For both constrained and unconstrained models,the theoretical analysis results in terms of the null space property,the spherical section property and the restricted invertibility factor are established.The practical algorithms via both the iteratively reweighted■_(1)and the difference of convex functions algorithms are presented.Numerical experiments are carried out to demonstrate the benefits of the suggested approach in a variety of circumstances.Its practical application in magnetic resonance imaging(MRI)reconstruction is also investigated.展开更多
文摘A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under grant No.LQ21A010003.
文摘In this paper,we offer a new sparse recovery strategy based on the generalized error function.The introduced penalty function involves both the shape and the scale parameters,making it extremely flexible.For both constrained and unconstrained models,the theoretical analysis results in terms of the null space property,the spherical section property and the restricted invertibility factor are established.The practical algorithms via both the iteratively reweighted■_(1)and the difference of convex functions algorithms are presented.Numerical experiments are carried out to demonstrate the benefits of the suggested approach in a variety of circumstances.Its practical application in magnetic resonance imaging(MRI)reconstruction is also investigated.