期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
1
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 Linear Model Mean Squared Prediction Error Final Prediction Error generalized cross validation Least Squares Ridge Regression
在线阅读 下载PDF
Least Squares Model Averaging Based on Generalized Cross Validation 被引量:3
2
作者 Xin-min LI Guo-hua ZOU +1 位作者 Xin-yu ZHANG Shang-wei ZHAO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第3期495-509,共15页
Frequentist model averaging has received much attention from econometricians and statisticians in recent years.A key problem with frequentist model average estimators is the choice of weights.This paper develops a new... Frequentist model averaging has received much attention from econometricians and statisticians in recent years.A key problem with frequentist model average estimators is the choice of weights.This paper develops a new approach of choosing weights based on an approximation of generalized cross validation.The resultant least squares model average estimators are proved to be asymptotically optimal in the sense of achieving the lowest possible squared errors.Especially,the optimality is built under both discrete and continuous weigh sets.Compared with the existing approach based on Mallows criterion,the conditions required for the asymptotic optimality of the proposed method are more reasonable.Simulation studies and real data application show good performance of the proposed estimators. 展开更多
关键词 asymptotic optimality frequentist model averaging generalized cross validation mallows criterion
原文传递
A Bregman adaptive sparse-spike deconvolution method in the frequency domain 被引量:3
3
作者 Pan Shu-Lin Yan Ke +1 位作者 Lan Hai-Qiang Qin Zi-Yu 《Applied Geophysics》 SCIE CSCD 2019年第4期463-472,560,共11页
To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the freque... To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability. 展开更多
关键词 DECONVOLUTION split Bregman algorithm frequency domain generalized cross validation OUTLIERS
在线阅读 下载PDF
Inverse Load Identification in Stiffened Plate Structure Based on in situ Strain Measurement 被引量:1
4
作者 Yihua Wang Zhenhuan Zhou +2 位作者 Hao Xu Shuai Li Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2021年第2期85-101,共17页
For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inv... For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%. 展开更多
关键词 Structural health monitoring load identification Tikhonov regularization generalized cross validation stiffened plate structure
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部