期刊文献+
共找到758篇文章
< 1 2 38 >
每页显示 20 50 100
Analysis of height and diameter growth patterns in Sakhalin fir seedlings competing with evergreen dwarf bamboo and deciduous vegetation using generalized additive models
1
作者 Hisanori Harayama Takeshi Yamada +1 位作者 Mitsutoshi Kitao Ikutaro Tsuyama 《Journal of Forestry Research》 2025年第5期76-89,共14页
The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bam... The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas. 展开更多
关键词 Abies sachalinensis Competition Crown cover Forest floor cover generalized additive models(gam) Relative growth rate
在线阅读 下载PDF
Integrated spatial generalized additive modeling for forest fire prediction:a case study in Fujian Province,China
2
作者 Chunhui Li Zhangwen Su +4 位作者 Rongyu Ni Guangyu Wang Yiyun Ouyang Aicong Zeng Futao Guo 《Journal of Forestry Research》 2025年第3期208-223,共16页
The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environmen... The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences. 展开更多
关键词 Forest fire prediction Logistic regression Spatial generalized additive model Spline functions Piecewise effects
在线阅读 下载PDF
Modeling and Fault Monitoring of Bioprocess Using Generalized Additive Models (GAMs) and Bootstrap
3
作者 郑蓉建 周林成 潘丰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1180-1183,共4页
Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on ri... Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on rich historical or online database is an effective way. A group of data based on bootstrap method could be resampling stochastically, improving generalization capability of model. In this paper, online fault monitoring of generalized additive models (GAMs) combining with bootstrap is proposed for glutamate fermentation process. GAMs and bootstrap are first used to decide confidence interval based on the online and off-line normal sampled data from glutamate fermentation experiments. Then GAMs are used to online fault monitoring for time, dissolved oxygen, oxygen uptake rate, and carbon dioxide evolution rate. The method can provide accurate fault alarm online and is helpful to provide useful information for removing fault and abnormal phenomena in the fermentation. 展开更多
关键词 bioprocess fault monitoring generalized additive model glutamic acid fermentation BOOTSTRAP modelING
在线阅读 下载PDF
Fitting Generalized Additive Logistic Regression Model with GAM Procedure
4
作者 Suresh Kumar Sharma Rashmi Aggarwal Kanchan Jain 《Journal of Mathematics and System Science》 2013年第9期442-453,共12页
In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes... In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes the usual assumptions of parametric model and enables us to uncover structure to establish the relationship between independent variables and dependent variable in exponential family that may not be obvious otherwise. In this paper, we discussed two methods of fitting generalized additive logistic regression model, one based on Newton Raphson method and another based on iterative weighted least square method for first and second order Taylor series expansion. The use of the GAM procedure with the specified set of weights, using local scoring algorithm, was applied to real life data sets. The cubic spline smoother is applied to the independent variables. Based on nonparametric regression and smoothing techniques, this procedure provides powerful tools for data analysis. 展开更多
关键词 Logistic model iterative generalized additive model weighted least squares cubic splines.
在线阅读 下载PDF
Predictive Vegetation Mapping Approach Based on Spectral Data, DEM and Generalized Additive Models 被引量:5
5
作者 SONG Chuangye HUANG Chong LIU Huiming 《Chinese Geographical Science》 SCIE CSCD 2013年第3期331-343,共13页
This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vege... This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision. 展开更多
关键词 vegetation mapping generalized additive models gams) SPOT Receiver Operating Characteristic (ROC) generalizedRegression Analysis and Spatial Predictions (GRASP) Huanghe River Delta
在线阅读 下载PDF
Modeling hot strip rolling process under framework of generalized additive model 被引量:3
6
作者 LI Wei-gang YANG Wei +2 位作者 ZHAO Yun-tao YAN Bao-kang LIU Xiang-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2379-2392,共14页
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener... This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling. 展开更多
关键词 industrial big data generalized additive model mechanical property prediction deformation resistance prediction
在线阅读 下载PDF
Modeling deformation resistance for hot rolling based on generalized additive model 被引量:1
7
作者 Wei-gang Li Chao Liu +2 位作者 Yun-tao Zhao Bin Liu Xiang-hua Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第12期1177-1183,共7页
A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of ... A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of dependent variable and independent variables of the model,the link function of dependent variable and smoothing functional form of each independent variable,estimating process of the link function and smooth functions,and the last model modification.Then,the practical modeling test was carried out based on a large amount of hot rolling process data.An integrated variable was proposed to reflect the effects of different chemical compositions such as carbon,silicon,manganese,nickel,chromium,niobium,etc.The integrated chemical composition,strain,strain rate and rolling temperature were selected as independent variables and the cubic spline as the smooth function for them.The modeling process of deformation resistance was realized by SAS software,and the influence curves of the independent variables on deformation resistance were obtained by local scoring algorithm.Some interesting phenomena were found,for example,there is a critical value of strain rate,and the deformation resistance increases before this value and then decreases.The results confirm that the new model has higher prediction accuracy than traditional ones and is suitable for carbon steel,microalloyed steel,alloyed steel and other steel grades. 展开更多
关键词 Hot rolling Deformation resistance Mathematical model generalized additive model
原文传递
Simulating Potential Distribution of Tamarix chinensis in Yellow River Delta by Generalized Additive Models
8
作者 SONG Chuangye HUANG Chong LIU Gaohuan 《湿地科学》 CSCD 2010年第4期347-353,共7页
There are typical ecosystems of littoral wetlands in the Yellow River Delta.In order to study the relationships between Tamarix chinensis and environmental variables and to predict T.chinensis potential distribution i... There are typical ecosystems of littoral wetlands in the Yellow River Delta.In order to study the relationships between Tamarix chinensis and environmental variables and to predict T.chinensis potential distribution in the Yellow River Delta,641 vegetation samples and 964 soil samples were collected in the area in October of 2004,2005,2006 and 2007.The contents of soil organic matter,total phosphorus,salt,and soluble potassium were determined.Then,the analyzed data were interpolated into spatial raster data by Kriging interpolation method.Meanwhile,the digital elevation model,soil type map and landform unit map of the Yellow River Delta were also collected.Generalized Additive Models(GAMs) were employed to build species-environment model and then simulate the potential distribution of T.chinensis.The results indicated that the distribution of T.chinensis was mainly limited by soil salt content,total soil phosphorus content,soluble potassium content,soil type,landform unit,and elevation.The distribution probability of T.chinensis was produced with a lookup table generated by Grasp Module(based on GAMs) in software ArcView GIS 3.2.The AUC(Area Under Curve) value of validation and cross-validation of ROC(Receive Operating Characteristic) were both higher than 0.8,which suggested that the established model had a high precision for predicting species distribution. 展开更多
关键词 Yellow River Delta Tamarix chinensis generalized additive models
在线阅读 下载PDF
Study of monthly variations in primary production and their relationships with environmental factors in the Daya Bay based on a general additive model 被引量:1
9
作者 KANG Jianhua HUANG Hao +2 位作者 LI Weiwen LIN Yili CHEN Xingqun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第12期107-117,共11页
In this study, the horizontal and vertical distribution of primary production(PP) and its monthly variations were described based on field data collected from the Daya Bay in January–December of 2016. The relationshi... In this study, the horizontal and vertical distribution of primary production(PP) and its monthly variations were described based on field data collected from the Daya Bay in January–December of 2016. The relationships between PP and environmental factors were analyzed using a general additive model(GAM). Significant seasonal differences were observed in the horizontal distribution of PP, while vertical distribution showed a relatively consistent unimodal pattern. The monthly average PP(calculated by carbon) ranged from 48.03 to 390.56 mg/(m~2·h),with an annual average of 182.77 mg/(m~2·h). The highest PP was observed in May and the lowest in November.Additionally, the overall trend in PP was spring>summer>winter>autumn, and spring PP was approximately three times that of autumn PP. GAM analysis revealed that temperature, bottom salinity, phytoplankton, and photosynthetically active radiation(PAR) had no significant relationships with PP, while longitude, depth, surface salinity, chlorophyll a(Chl a) and transparency were significantly correlated with PP. Overall, the results presented herein indicate that monsoonal changes and terrestrial and offshore water systems have crucial effects on environmental factors that are associated with PP changes. 展开更多
关键词 primary production environmental factors general additive model monthly variations Daya Bay
在线阅读 下载PDF
Inference Procedures on the Generalized Poisson Distribution from Multiple Samples: Comparisons with Nonparametric Models for Analysis of Covariance (ANCOVA) of Count Data
10
作者 Maha Al-Eid Mohamed M. Shoukri 《Open Journal of Statistics》 2021年第3期420-436,共17页
Count data that exhibit over dispersion (variance of counts is larger than its mean) are commonly analyzed using discrete distributions such as negative binomial, Poisson inverse Gaussian and other models. The Poisson... Count data that exhibit over dispersion (variance of counts is larger than its mean) are commonly analyzed using discrete distributions such as negative binomial, Poisson inverse Gaussian and other models. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial and the Poisson inverse Gaussian have variance larger than the mean and therefore are more appropriate to model over-dispersed count data. As an alternative to these two models, we shall use the generalized Poisson distribution for group comparisons in the presence of multiple covariates. This problem is known as the ANCOVA and is solved for continuous data. Our objectives were to develop ANCOVA using the generalized Poisson distribution, and compare its goodness of fit to that of the nonparametric Generalized Additive Models. We used real life data to show that the model performs quite satisfactorily when compared to the nonparametric Generalized Additive Models. 展开更多
关键词 Count Regression Over Dispersion generalized Linear models Analysis of Covariance generalized additive models
在线阅读 下载PDF
基于GAM的夏季连云港近海中国毛虾资源丰度与环境因子关系
11
作者 李冬佳 李国东 +8 位作者 熊瑛 仲霞铭 张琥顺 宋大德 杨帆 康中杰 吴晓睿 王淑艳 梁龙 《海洋渔业》 北大核心 2025年第5期589-598,共10页
为探究连云港近海中国毛虾(Acetes chinensis)资源分布与环境因子间的关系,根据2021年该海域中国毛虾限额捕捞期间捕捞日志和海洋环境数据(经纬度、海表温度、海表盐度、浮游植物丰度、潮流、水深),运用广义可加模型(generalized additi... 为探究连云港近海中国毛虾(Acetes chinensis)资源分布与环境因子间的关系,根据2021年该海域中国毛虾限额捕捞期间捕捞日志和海洋环境数据(经纬度、海表温度、海表盐度、浮游植物丰度、潮流、水深),运用广义可加模型(generalized additive model,GAM)探究中国毛虾资源丰度[以单位捕捞努力量渔获量(catch per unit effort,CPUE)表示]随环境因子变化情况。结果显示,中国毛虾资源在空间上呈现多核心聚集规律,CPUE高值区域分布于120°04'~120°13'E、34°43'~34°46'N以及119°46'~119°50'E、34°44'~34°45'N海域。最优GAM模型累积偏差解释率为55.20%,偏差解释率最大因子为海表温度(17.40%),其次是纬度(13.90%)和经度(6.80%)。海表温度20.0~24.0℃时,毛虾CPUE随着海表温度的升高而平稳上升;当海表温度大于24.0℃,毛虾CPUE随温度上升逐渐下降;在捕捞区域范围内,中国毛虾CPUE总体上随着纬度的增加而增加,经度影响则相反;中国毛虾CPUE基本随着浮游植物丰度的增加而增加。此外,在低潮期或高潮期时进行布网捕捞,可有效提高毛虾CPUE。研究结果可用于进一步构建中国毛虾栖息地模型,为准确预测其渔场分布及制定限额捕捞管理政策提供科学依据。 展开更多
关键词 中国毛虾 限额捕捞 CPUE 环境因子 连云港近海
在线阅读 下载PDF
基于空间聚类与GAMM模型的典型资源型城市滑坡易发性评估:以冷水江市为例 被引量:1
12
作者 何峰 《中国矿业》 北大核心 2025年第8期112-121,共10页
本文针对现有滑坡易发性评估方法在处理空间异质性和非线性关系方面的局限性,以湖南省典型资源型城市冷水江市为研究对象,旨在构建一个融合空间异质性特征的滑坡易发性评估体系。本文通过实地调查与历史记录收集,获取了2015年5月至2024... 本文针对现有滑坡易发性评估方法在处理空间异质性和非线性关系方面的局限性,以湖南省典型资源型城市冷水江市为研究对象,旨在构建一个融合空间异质性特征的滑坡易发性评估体系。本文通过实地调查与历史记录收集,获取了2015年5月至2024年7月期间325起滑坡事件数据,并建立了包含12个因子的滑坡易发性评价指标体系,涵盖地形、植被覆盖、距离类及岩性等多维变量。在数据预处理阶段,进行了网格划分、数据投影转换、缺失值填补和标准化等操作。研究采用空间约束多元聚类(SCMC)方法分析滑坡事件的空间分布规律,并运用广义加性混合模型(GAMM)结合“解释偏差”评估变量重要性。同时,利用GIS技术和自然断点法实现了滑坡易发性的可视化与分级。研究结果表明,考虑空间随机效应的GAMM模型在AIC、BIC、伪R_2和对数似然等指标上均优于未考虑空间随机效应的模型,在识别高风险区域滑坡方面表现更为出色。研究发现,剖面曲率、距道路距离、地形湿度指数和距采矿区距离等变量在滑坡易发性评估中具有极高的重要性。此外,研究结果显示冷水江市滑坡易发区域呈现显著的聚集性,考虑空间效应的模型能更准确地反映这一规律,有效避免了低风险区域的误判。本研究构建的评估体系对冷水江市及类似资源型城市的滑坡灾害防治具有重要的应用价值。 展开更多
关键词 资源型城市 滑坡易发性 空间异质性 广义加性混合模型 冷水江市
在线阅读 下载PDF
基于two-stage GAM模型探究万泉河口须鳗虾虎鱼和真吻虾虎鱼仔鱼分布格局及其对环境因子的响应
13
作者 李政 王硕 +6 位作者 杨羽睿 罗金萍 王智豪 程飞 谢松光 宋一清 蔡杏伟 《水生态学杂志》 北大核心 2025年第5期172-183,共12页
分析海南岛万泉河口2种虾虎鱼仔鱼的分布特征及其对环境因子的响应,为制定热带河口鱼类资源保护与栖息地管理策略提供科学基础。2021—2022年在万泉河口7个站位采集须鳗虾虎鱼(Taenioidescirratus)和真吻虾虎鱼(Rhinogobius similis)仔... 分析海南岛万泉河口2种虾虎鱼仔鱼的分布特征及其对环境因子的响应,为制定热带河口鱼类资源保护与栖息地管理策略提供科学基础。2021—2022年在万泉河口7个站位采集须鳗虾虎鱼(Taenioidescirratus)和真吻虾虎鱼(Rhinogobius similis)仔鱼样品并收集环境因子,利用两阶段广义加性模型(two-stage GAM)研究2种仔鱼的时空分布特征,并分析与环境因子的响应关系。结果显示,2种仔鱼均呈现出明显的季节差异和空间异质性。须鳗虾虎鱼仔鱼丰度在雨季(5—10月)显著高于旱季,其中8月达到最高值,主要分布在潟湖内部的红树林边缘区域;真吻虾虎鱼仔鱼丰度在旱季(12—翌年4月)明显高于雨季,其中2月达到最高值,主要分布在河口近岸的砂质底质区域。GAM模型结果表明,须鳗虾虎鱼的出现概率主要受溶解氧、总氮和pH影响(累计解释率68.3%),丰度则受温度、盐度和叶绿素a调控(累计解释率68.7%);真吻虾虎鱼的出现概率主要受温度和溶解氧影响(累计解释率57.5%),其丰度则受溶解氧、总氮、叶绿素a和pH影响(累计解释率75.4%)。研究表明两阶段广义加性模型可有效解决数据中的零膨胀与非线性问题,为仔鱼分布格局与环境响应机制提供更高精度的量化手段。 展开更多
关键词 仔鱼 须鳗虾虎鱼 真吻虾虎鱼 时空分布 环境因子 两阶段广义加性模型 万泉河口
在线阅读 下载PDF
基于BOCD-PCMCI-GAM的上海碳权交易价的因果发现与预测
14
作者 陆欣怡 陈雪东 张斌 《湖州师范学院学报》 2025年第8期16-23,共8页
构建BOCD-PCMCI-GAM模型,对2016年1月4日至2024年6月13日上海碳排放权交易价格进行预测研究。该模型采用贝叶斯在线变点检测(BOCD)识别非平稳碳排放权交易数据的结构突变点,通过PCMCI(Perter-Clark Mementary Conditional Independence... 构建BOCD-PCMCI-GAM模型,对2016年1月4日至2024年6月13日上海碳排放权交易价格进行预测研究。该模型采用贝叶斯在线变点检测(BOCD)识别非平稳碳排放权交易数据的结构突变点,通过PCMCI(Perter-Clark Mementary Conditional Independence)算法准确发现变量间的因果结构和关系,并将发现的因果结构嵌入广义可加模型(GAM)进行滚动预测。将该BOCD-PCMCI-GAM模型与ARIMA、VAR和LSTM模型进行对比实验,结果表明,在综合考虑宏观经济、气候变化、能源指数和国际汇率等多维影响因素的建模框架下,BOCD-PCMCI-GAM模型具有最小的预测误差和最高的决定系数,展现出显著的预测优势。 展开更多
关键词 碳排放权交易价格 贝叶斯在线变点检测 PCMCI因果发现 广义可加模型
在线阅读 下载PDF
基于广义相加模型(GAM)的虎生境适宜性评估
15
作者 刘乐超 王文博 杨庆宇 《云南地理环境研究》 2025年第4期58-69,共12页
为评估虎生境适宜性,以云南省为研究区域,收集了2000年左右虎的分布数据及海拔、坡度、年平均温度等9个环境因子数据。通过皮尔逊相关系数分析剔除相关性较高的海拔和年平均温度后,剩余7个因子经Maxent模型分析确定年平均降水量、与人... 为评估虎生境适宜性,以云南省为研究区域,收集了2000年左右虎的分布数据及海拔、坡度、年平均温度等9个环境因子数据。通过皮尔逊相关系数分析剔除相关性较高的海拔和年平均温度后,剩余7个因子经Maxent模型分析确定年平均降水量、与人类活动用地距离、与河流距离、归一化植被指数(NDVI)和坡度作为5个关键环境因子。基于R语言mgcv包的gam函数构建广义相加模型(GAM),结合2022年的年平均降水量、NDVI及与人类活动用地距离数据,完成对2022年云南省虎生境适宜性的评估。结果显示,2022年云南省适宜虎生存的区域主要集中在南部和西部的德宏、临沧、普洱、红河等边境地区;与2000年相比,虎的生境适宜性显著下降,年平均降水量是影响虎生境适宜性的最主要因子。 展开更多
关键词 广义相加模型(gam) 生境适宜性 环境因子
在线阅读 下载PDF
基于GAM模型的唐山市林地植被物候驱动机制的探讨
16
作者 张聪聪 花艺玮 +2 位作者 孟丹 李小娟 宋加颖 《河北师范大学学报(自然科学版)》 2025年第6期624-640,共17页
为加强植被物候响应机理的研究,基于广义相加模型(generalized additive model,GAM)探讨了唐山市林地植被物候驱动机制,以唐山市2001-2020年MOD13Q1 NDVI数据为基础,采用动态阈值法提取了生长季始期(start of growth season,SOG)和生长... 为加强植被物候响应机理的研究,基于广义相加模型(generalized additive model,GAM)探讨了唐山市林地植被物候驱动机制,以唐山市2001-2020年MOD13Q1 NDVI数据为基础,采用动态阈值法提取了生长季始期(start of growth season,SOG)和生长季结束期(end of growth season,EOG)2个物候参数,基于TS-MK进行了物候的时间变化趋势分析.研究结果表明:1)唐山西北部和东南部部分地区SOG较早,南部较晚;北部EOG较晚,东南部较早;2001-2020年唐山大部分地区SOG提前(面积占比82.77%),EOG推迟(面积占比78.55%);2)在SOG的单驱动因素GAM模型中,降水量、最高气温、最低气温、昼夜温差和平均气温对SOG变化的解释率较高(66.8%~95.7%),且调整判定系数较大(0.674~0.957);在EOG的单驱动因素GAM模型中,降水量、最高气温、最低气温、昼夜温差和平均气温对EOG变化的解释率较高(54.3%~65.7%),且调整判定系数较大(0.524~0.649),但整体解释程度仍低于各驱动因子对SOG的解释效果;3)在SOG和EOG的多驱动因素GAM模型中,相较于其他驱动因素,昼夜温差的重要性最大,分别为F260.283,F=25.572,昼夜温差每增加0.1℃,SOG提前6.27 d,EOG推迟5.84 d;4)在驱动因素的交互作用对SOG变化影响的GAM模型中,最高气温-昼夜温差重要性最大(F=38.55);在驱动因素的交互作用对EOG变化影响的GAM模型中,降水量-昼夜温差重要性最大(F 49.015). 展开更多
关键词 植被物候 广义相加模型 交互作用 非线性 驱动机制
在线阅读 下载PDF
基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响 被引量:34
17
作者 唐浩 许柳雄 +3 位作者 陈新军 朱国平 周成 王学昉 《海洋环境科学》 CAS CSCD 北大核心 2013年第4期518-522,共5页
基于2000~2007年中西太平洋金枪鱼围网生产统计数据及遥感手段获取的海表温度、海面高度、叶绿素浓度等环境数据,利用广义可加模型(GAM)分析了中西太平洋鲣鱼渔场分布及其与时空和环境因子的关系。结果表明:GAM模型对单位捕捞努力量渔... 基于2000~2007年中西太平洋金枪鱼围网生产统计数据及遥感手段获取的海表温度、海面高度、叶绿素浓度等环境数据,利用广义可加模型(GAM)分析了中西太平洋鲣鱼渔场分布及其与时空和环境因子的关系。结果表明:GAM模型对单位捕捞努力量渔获量(CPUE)总偏差解释率为64.40%,其中贡献最大的为经度,贡献率为46.27%。鲣鱼的CPUE呈逐年递增状态;作业渔场全年均有分布,但季节性差异并不明显,其中4月为作业集中月份;鲣鱼作业渔场主要分布在10°S~10°N,140°~175°E范围内;适宜海表温度为28~30℃;适宜的海表面高度为70~100 cm;适宜的叶绿素浓度为0.01~0.20mg/m3。影响渔场的因子按重要性从大到小依次为:经度,纬度,年份,海面高度,海表温度,叶绿素浓度和月份。 展开更多
关键词 鲣鱼 中西太平洋 gam模型 渔场
原文传递
黑河上游天然草地蝗虫物种丰富度与地形关系的GAM分析 被引量:20
18
作者 李丽丽 赵成章 +2 位作者 殷翠琴 王大为 张军霞 《昆虫学报》 CAS CSCD 北大核心 2011年第11期1312-1318,共7页
地形差异性导致的环境异质性为小尺度范围内生物空间格局的形成与维持提供了一种重要机制,是形成物种丰富度差异性的前提条件。借助GIS和S-PLUS软件,利用广义可加模型(GAM)于7-8月对影响蝗虫分布的地形因子进行了研究,在定量分析黑河上... 地形差异性导致的环境异质性为小尺度范围内生物空间格局的形成与维持提供了一种重要机制,是形成物种丰富度差异性的前提条件。借助GIS和S-PLUS软件,利用广义可加模型(GAM)于7-8月对影响蝗虫分布的地形因子进行了研究,在定量分析黑河上游祁连山区北坡地形的海拔分异特征的基础上研究了该区域蝗虫的丰富度与地形复杂度的关系。结果表明:在36个样方中共采集蝗虫3149头,隶属于3科10属13种;蝗虫丰富度受地形因子影响的顺序为海拔>坡向>坡度>剖面曲率>平面曲率>坡位;蝗虫的分布在平面曲率和剖面曲率各个梯度上的分布比较均衡,在海拔、坡向以及坡位的每个梯度上呈二次抛物线分布,坡度上呈递减趋势;从分布的区域上来看,蝗虫在整个区域都有较高的丰富度,但主要分布在海拔2600~2700m区域,坡向上则主要集中在西北坡和西坡,与实际观测情况相一致。蝗虫丰富度与地形因子之间的相互关系以及分布状态,反映了地形因子对水热条件的重分配使蝗虫分布格局出现多元化以及破碎化。 展开更多
关键词 草地 蝗虫 物种多样性 空间分布 地形因子 广义可加模型(gam) 祁连山
原文传递
基于GAM模型研究金枪鱼围网沉降性能影响因素 被引量:15
19
作者 唐浩 许柳雄 +2 位作者 周成 朱国平 王学昉 《水产学报》 CAS CSCD 北大核心 2013年第6期944-950,共7页
金枪鱼围网渔业是现代金枪鱼渔业中捕捞效率最高的方法,研究围网沉降性能与影响因子之间的关系有利于提高围网捕捞效率。利用2011年9—12月金枪鱼围网渔船"金汇7号"在中西太平洋作业时所收集的数据,实验分析了围网沉降深度(H... 金枪鱼围网渔业是现代金枪鱼渔业中捕捞效率最高的方法,研究围网沉降性能与影响因子之间的关系有利于提高围网捕捞效率。利用2011年9—12月金枪鱼围网渔船"金汇7号"在中西太平洋作业时所收集的数据,实验分析了围网沉降深度(H)与放网时间(T),放网速度(V0),括纲(L)及跑纲(L1)的投放长度,10、60和120 m 3个水层流速(V10,V60及V120)等因子之间的关系,并利用广义加性模型(GAM)评价了各因子对沉降深度的影响。结果表明:(1)网具中部沉降深度与时间的关系为H=-0.000 2 t2+0.408 6 t+1.809 9(R2=0.999 3);(2)沉降速度随着深度的增加而减小,网具中部沉降速度与时间的关系为V=2.5×107 t2-6×104 t+0.4412(R2=0.985 2);(3)GAM模型中的逐步回归分析表明,T、V60、V120和L 4个因子对H影响显著,且影响大小依次为V120、L、T和V60;(4)GAM模型分析表明,沉降深度随放网时间的增加而增大,放网时间集中在500~550 s;流速的大小与沉降深度呈负相关;括纲投放长度主要集中在1 800 m左右。 展开更多
关键词 金枪鱼围网 下纲 沉降性能 影响因素 广义加性模型
在线阅读 下载PDF
GLM和GAM模型研究东黄海鲐资源渔场与环境因子的关系 被引量:57
20
作者 郑波 陈新军 李纲 《水产学报》 CAS CSCD 北大核心 2008年第3期379-386,共8页
鲐是我国近海重要中上层鱼类,研究其资源变动、渔场分布与时空、海洋环境因子之间的关系有利于该资源的合理开发和利用。根据1998-2004年我国东黄海大型鲐围网渔业的生产统计和时间、空间、表温、表层盐度、表温梯度、表温的月差异等环... 鲐是我国近海重要中上层鱼类,研究其资源变动、渔场分布与时空、海洋环境因子之间的关系有利于该资源的合理开发和利用。根据1998-2004年我国东黄海大型鲐围网渔业的生产统计和时间、空间、表温、表层盐度、表温梯度、表温的月差异等环境数据,利用广义可加模型(GAM)和广义线性模型(GLM)对鲐资源丰度和环境因子的关系进行研究。结果表明,在南部海域,作业渔场集中在122.5°E^124°E、26.5°N^28°N,适宜表温26.5~30℃,适宜表层盐度33.3~34.3,并明显集中在锋区周边海域;在北部海域,作业渔场集中在122.5°E^125.5°E、33°N^37.5°N,适宜表温15~20℃,适宜表层盐度31.3~32.3,集中在冷水区边缘海域。相对资源密度指数大于0.5的海域为122°30′E^124°30′E、26°30′N^28°N,122°30′E^125°30′E、33°N^34°30′N和124°E^125°E、34°30′N^37°N。研究认为,南北不同海域鲐分布的适宜表温和表层盐度差异明显。影响鲐资源丰度的环境因子重要性依次为时间、空间和海洋环境。 展开更多
关键词 广义线性模型 广义可加模型 资源与渔场 海洋环境因子 东黄海
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部