期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Predicting the minimum horizontal principal stress using genetic expression programming and borehole breakout data
1
作者 Rui Zhang Jian Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4227-4240,共14页
As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression progra... As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression programming(GEP)algorithm-based model,in which the data of borehole breakout size,vertical principal stress,and rock strength characteristics are used as the inputs,is proposed to predict the minimum horizontal principal stress.Seventy-nine(79)samples with seven features are collected to construct the minimum horizontal principal stress dataset used for training models.Twenty-four(24)GEP model hyperparameter sets were configured to explore the key parameter combinations among the inputs and their potential relationships with the minimum horizontal principal stresses.Model performance was evaluated using root mean squared error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R^(2)).By comparing predictive performance and parameter composition,two models were selected from 24 GEP models that demonstrated excellent predictive performance and simpler parameter composition.Compared with prevalent models,the results indicate that the two selected GEP models have better performance on the test set(R^(2)=0.9568 and 0.9621).Additionally,the results conducted by SHapley Additive exPlanations(SHAP)sensitivity analysis and Local Interpretable Model-agnostic Explanations(LIME)demonstrate that the vertical principal stress is the most influential parameter in both GEP models.The two GEP models have simple parameter compositions as well as stable and excellent prediction performance,which is a viable method for predicting the minimum horizontal principal stresses. 展开更多
关键词 gene expression programming(gep) In situ stresses Minimum horizontal principal stresses Borehole breakout
在线阅读 下载PDF
Evaluation of underground hard rock mine pillar stability using gene expression programming and decision tree-support vector machine models
2
作者 Mohammad H.Kadkhodaei Ebrahim Ghasemi +1 位作者 Jian Zhou Melika Zahraei 《Deep Underground Science and Engineering》 2025年第1期18-34,共17页
Assessing the stability of pillars in underground mines(especially in deep underground mines)is a critical concern during both the design and the operational phases of a project.This study mainly focuses on developing... Assessing the stability of pillars in underground mines(especially in deep underground mines)is a critical concern during both the design and the operational phases of a project.This study mainly focuses on developing two practical models to predict pillar stability status.For this purpose,two robust models were developed using a database including 236 case histories from seven underground hard rock mines,based on gene expression programming(GEP)and decision tree-support vector machine(DT-SVM)hybrid algorithms.The performance of the developed models was evaluated based on four common statistical criteria(sensitivity,specificity,Matthews correlation coefficient,and accuracy),receiver operating characteristic(ROC)curve,and testing data sets.The results showed that the GEP and DT-SVM models performed exceptionally well in assessing pillar stability,showing a high level of accuracy.The DT-SVM model,in particular,outperformed the GEP model(accuracy of 0.914,sensitivity of 0.842,specificity of 0.929,Matthews correlation coefficient of 0.767,and area under the ROC of 0.897 for the test data set).Furthermore,upon comparing the developed models with the previous ones,it was revealed that both models can effectively determine the condition of pillar stability with low uncertainty and acceptable accuracy.This suggests that these models could serve as dependable tools for project managers,aiding in the evaluation of pillar stability during the design and operational phases of mining projects,despite the inherent challenges in this domain. 展开更多
关键词 decision tree-support vector machine(DT-SVM) gene expression programming(gep) hard rock pillar stability underground mining
原文传递
Advanced Machine Learning and Gene Expression Programming Techniques for Predicting CO_(2)-Induced Alterations in Coal Strength
3
作者 Zijian Liu Yong Shi +3 位作者 ChuanqiLi Xiliang Zhang Jian Zhou Manoj Khandelwal 《Computer Modeling in Engineering & Sciences》 2025年第4期153-183,共31页
Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its im... Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration.A large number of experiments have proved that CO_(2) interaction time(T),saturation pressure(P)and other parameters have significant effects on coal strength.However,accurate evaluation of CO_(2)-induced alterations in coal strength is still a difficult problem,so it is particularly important to establish accurate and efficient prediction models.This study explored the application of advancedmachine learning(ML)algorithms and Gene Expression Programming(GEP)techniques to predict CO_(2)-induced alterations in coal strength.Sixmodels were developed,including three metaheuristic-optimized XGBoost models(GWO-XGBoost,SSA-XGBoost,PO-XGBoost)and three GEP models(GEP-1,GEP-2,GEP-3).Comprehensive evaluations using multiple metrics revealed that all models demonstrated high predictive accuracy,with the SSA-XGBoost model achieving the best performance(R2—Coefficient of determination=0.99396,RMSE—Root Mean Square Error=0.62102,MAE—Mean Absolute Error=0.36164,MAPE—Mean Absolute Percentage Error=4.8101%,RPD—Residual Predictive Deviation=13.4741).Model interpretability analyses using SHAP(Shapley Additive exPlanations),ICE(Individual Conditional Expectation),and PDP(Partial Dependence Plot)techniques highlighted the dominant role of fixed carbon content(FC)and significant interactions between FC and CO_(2) saturation pressure(P).Theresults demonstrated that the proposedmodels effectively address the challenges of CO_(2)-induced strength prediction,providing valuable insights for geological storage safety and environmental applications. 展开更多
关键词 CO_(2)-induced coal strength meta-heuristic optimization algorithms XGBoost gene expression programming model interpretability
在线阅读 下载PDF
A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method 被引量:3
4
作者 Maral Goharzay Ali Noorzad +1 位作者 Ahmadreza Mahboubi Ardakani Mostafa Jalal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期683-693,共11页
In this context,two different approaches of soil liquefaction evaluation using a soft computing technique based on the worldwide standard penetration test(SPT) databases have been studied.Gene expression programming(G... In this context,two different approaches of soil liquefaction evaluation using a soft computing technique based on the worldwide standard penetration test(SPT) databases have been studied.Gene expression programming(GEP) as a gray-box modeling approach is used to develop different deterministic models in order to evaluate the occurrence of soil liquefaction in terms of liquefaction field performance indicator(LI) and factor of safety(FS) in logistic regression and classification concepts.The comparative plots illustrate that the classification concept-based models show a better performance than those based on logistic regression.In the probabilistic approach,a calibrated mapping function is developed in the context of Bayes’ theorem in order to capture the failure probabilities(PL) in the absence of the knowledge of parameter uncertainty.Consistent results obtained from the proposed probabilistic models,compared to the most well-known models,indicate the robustness of the methodology used in this study.The probability models provide a simple,but also efficient decision-making tool in engineering design to quantitatively assess the liquefaction triggering thresholds. 展开更多
关键词 LIQUEFACTION Soft computing technique gene expression programming(gep) Deterministic model Bayes' theorem
在线阅读 下载PDF
Prediction of mode I fracture toughness of rock using linear multiple regression and gene expression programming 被引量:4
5
作者 Bijan Afrasiabian Mosleh Eftekhari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1421-1432,共12页
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p... Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors. 展开更多
关键词 Mode I fracture Toughness Critical stress intensity factor Linear multiple regression(LMR) gene expression programming(gep)
在线阅读 下载PDF
Scheduling Rules Based on Gene Expression Programming for Resource-Constrained Project Scheduling Problem 被引量:3
6
作者 贾艳 李晋航 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期91-96,共6页
In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select... In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances. 展开更多
关键词 resource-constrained project scheduling problem(RCPSP) gene expression programming(gep) scheduling rules(SRs)
在线阅读 下载PDF
An expert system for predicting shear stress distribution in circular open channels using gene expression programming 被引量:1
7
作者 Zohreh Sheikh Khozani Hossein Bonakdari Isa Ebtehaj 《Water Science and Engineering》 EI CAS CSCD 2018年第2期167-176,共10页
The shear stress distribution in circular channels was modeled in this study using gene expression programming(GEP). 173 sets of reliable data were collected under four flow conditions for use in the training and test... The shear stress distribution in circular channels was modeled in this study using gene expression programming(GEP). 173 sets of reliable data were collected under four flow conditions for use in the training and testing stages. The effect of input variables on GEP modeling was studied and 15 different GEP models with individual, binary, ternary, and quaternary input combinations were investigated. The sensitivity analysis results demonstrate that dimensionless parameter y/P, where y is the transverse coordinate, and P is the wetted perimeter, is the most influential parameter with regard to the shear stress distribution in circular channels. GEP model 10, with the parameter y/P and Reynolds number(Re) as inputs, outperformed the other GEP models, with a coefficient of determination of 0.7814 for the testing data set. An equation was derived from the best GEP model and its results were compared with an artificial neural network(ANN) model and an equation based on the Shannon entropy proposed by other researchers. The GEP model, with an average RMSE of 0.0301, exhibits superior performance over the Shannon entropy-based equation, with an average RMSE of 0.1049, and the ANN model, with an average RMSE of 0.2815 for all flow depths. 展开更多
关键词 CIRCULAR channel gene expression programming(gep) Sensitivity analysis SHEAR stress distribution SOFT computing
在线阅读 下载PDF
A true triaxial strength criterion for rocks by gene expression programming 被引量:2
8
作者 Jian Zhou Rui Zhang +1 位作者 Yingui Qiu Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2508-2520,共13页
Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of r... Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of rocks,taking into account the influence of rock genesis on their mechanical behavior during the model building process.A true triaxial strength criterion based on the GEP model for igneous,metamorphic and magmatic rocks was obtained by training the model using collected data.Compared to the modified Weibols-Cook criterion,the modified Mohr-Coulomb criterion,and the modified Lade criterion,the strength criterion based on the GEP model exhibits superior prediction accuracy performance.The strength criterion based on the GEP model has better performance in R2,RMSE and MAPE for the data set used in this study.Furthermore,the strength criterion based on the GEP model shows greater stability in predicting the true triaxial strength of rocks across different types.Compared to the existing strength criterion based on the genetic programming(GP)model,the proposed criterion based on GEP model achieves more accurate predictions of the variation of true triaxial strength(s1)with intermediate principal stress(s2).Finally,based on the Sobol sensitivity analysis technique,the effects of the parameters of the three obtained strength criteria on the true triaxial strength of the rock are analysed.In general,the proposed strength criterion exhibits superior performance in terms of both accuracy and stability of prediction results. 展开更多
关键词 gene expression programming(gep) True triaxial strength Rock failure criteria Intermediate principal stress
在线阅读 下载PDF
Feature Selection Optimisation for Cancer Classification Based on Evolutionary Algorithms:An Extensive Review
9
作者 Siti Ramadhani Lestari Handayani +4 位作者 Theam Foo Ng Sumayyah Dzulkifly Roziana Ariffin Haldi Budiman Shir Li Wang 《Computer Modeling in Engineering & Sciences》 2025年第6期2711-2765,共55页
In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classificati... In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency. 展开更多
关键词 Feature selection(FS) gene expression profile(gep) cancer classification evolutionary algorithms(EAs) dynamic-length chromosome
暂未订购
基于改进的多表达式编程算法的木材染色配方预测 被引量:2
10
作者 管雪梅 张威 杨渠三 《科学技术与工程》 北大核心 2025年第7期2865-2873,共9页
由于珍贵木材日益稀缺以及过度开发导致的严重环境问题,有必要通过对普通木材进行染色来模仿珍贵木材的外观。在本研究中采用计算机辅助染色技术,实现对普通木材的高精度染色,从而创造出外观类似珍贵木材的替代品,减少人们对它们的依赖... 由于珍贵木材日益稀缺以及过度开发导致的严重环境问题,有必要通过对普通木材进行染色来模仿珍贵木材的外观。在本研究中采用计算机辅助染色技术,实现对普通木材的高精度染色,从而创造出外观类似珍贵木材的替代品,减少人们对它们的依赖。首先,基于基因表达编程(gene expression programming, GEP)的概念,提出了一种多表达式编程(multi-expression programming, MEP)算法来预测染料配比,考虑到多种染料之间的复杂相互作用,采用多基因表达,MEP算法能够处理这些复杂的多种染料之间的相互作用,从而得到更直观的函数表达式。为了提高MEP的函数挖掘准确性,自适应调整突变和重组算子的概率,并使用并行编程来增强函数挖掘效率。与基因表达编程的结果相比,MEP深入挖掘了函数关系,并在颜色预测中获得了0.113的相对偏差结果。 展开更多
关键词 木材染色 基因表达编程 多表达式编程 计算机颜色匹配 遗传算法 光谱反射率
在线阅读 下载PDF
M-GEP:基于多层染色体基因表达式编程的遗传进化算法 被引量:32
11
作者 彭京 唐常杰 +1 位作者 李川 胡建军 《计算机学报》 EI CSCD 北大核心 2005年第9期1459-1466,共8页
该文提出了一种新的基于多层染色体基因表达式编程的遗传进化算法MGEP,新算法引入了多层染色体的概念,利用染色体构建的层次调用模型对个体进行表达,在解决实际函数发现、电路进化等实际问题中取得了良好效果.该文主要贡献包括:(1)提出... 该文提出了一种新的基于多层染色体基因表达式编程的遗传进化算法MGEP,新算法引入了多层染色体的概念,利用染色体构建的层次调用模型对个体进行表达,在解决实际函数发现、电路进化等实际问题中取得了良好效果.该文主要贡献包括:(1)提出了基于多染色体的基因表达式编程算法(MGEP);(2)建立了不同染色体的层次调用模型及存储结构;(3)提出并实现了基于染色体的重组算子和基因随机重组算子.对多基因GEP和单基因GEP的对比实验结果表明,平均进化辈数仅为后者的29%~81%. 展开更多
关键词 多层染色体 M-gep 遗传进化 基因表达式编程
在线阅读 下载PDF
基于GEP的爆破峰值速度预测模型 被引量:21
12
作者 史秀志 陈新 +2 位作者 史采星 刘博 张迅 《振动与冲击》 EI CSCD 北大核心 2015年第10期95-99,共5页
针对施工中爆破振动危害严重、振动峰值速度难以预测问题,选用基因表达式编程(Gene Expression Programming,GEP)算法以My Eclipse为开发工具,建立基于GEP的爆破峰值速度预测模型。取实测数据进行预测,并与萨道夫斯基经验公式与模糊神... 针对施工中爆破振动危害严重、振动峰值速度难以预测问题,选用基因表达式编程(Gene Expression Programming,GEP)算法以My Eclipse为开发工具,建立基于GEP的爆破峰值速度预测模型。取实测数据进行预测,并与萨道夫斯基经验公式与模糊神经网络模型预测结果对比。结果表明,三者平均相对误差分别为8.8%、11.3%及27.9%。由此证明GEP模型预测爆破峰值速度可行,亦为爆破振动预测提供新思路。 展开更多
关键词 爆破振动 爆破峰值速度 gep 预测
在线阅读 下载PDF
LDecode:具有线性复杂度的GEP适应度评价算法 被引量:9
13
作者 陈瑜 唐常杰 +2 位作者 李川 乔少杰 朱明放 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2008年第1期107-112,共6页
基因表达式编程(Cene Expression Programming,GEP)在处理复杂长基因时的空间、时间效率较低,为解决这一问题,提出并实现了具有线性复杂度的染色体适应度评价算法。分析了传统CEP算法中借助ET(Expression Tree)树进行染色体适... 基因表达式编程(Cene Expression Programming,GEP)在处理复杂长基因时的空间、时间效率较低,为解决这一问题,提出并实现了具有线性复杂度的染色体适应度评价算法。分析了传统CEP算法中借助ET(Expression Tree)树进行染色体适应度评价的局限性;提出并实现了具有线性复杂度的染色体适应度评价算法LDeeode算法;针对染色体长度、种群大小、测试数据集大小、进化代数等不同参数,对提出的染色体适应度评价算法进行了评价和分析。试验表明,提出的评价算法运行速度较传统基于ET树的GEP提高了4.5~5.1倍,时间、空间复杂度均为O(n)。 展开更多
关键词 基因表达式编程 表达式树 适应度评价
在线阅读 下载PDF
一种新型的GEP算法及应用研究 被引量:9
14
作者 陈安升 蔡之华 +1 位作者 谷琼 张烈超 《计算机应用研究》 CSCD 北大核心 2007年第6期98-100,103,共4页
提出一种适合于GEP表达式树构造的新方法,以及相应的新解码方法(GPED)。通过实验对比,GPED可大大缩短演化时间。提出一种新的算法GPEP,将GPEP应用于碎石桩复合地基承载力预测,结果表明GPEP算法在预测精度和演化效率上均超过遗传神经网络... 提出一种适合于GEP表达式树构造的新方法,以及相应的新解码方法(GPED)。通过实验对比,GPED可大大缩短演化时间。提出一种新的算法GPEP,将GPEP应用于碎石桩复合地基承载力预测,结果表明GPEP算法在预测精度和演化效率上均超过遗传神经网络、GP等算法。 展开更多
关键词 基因表达式编程 遗传程序设计 解码 预测
在线阅读 下载PDF
Modelling reference evapotranspiration using gene expression programming and artificial neural network at Pantnagar,India
15
作者 Pangam Heramb Pramod Kumar Singh +1 位作者 K.V.Ramana Rao A.Subeesh 《Information Processing in Agriculture》 EI CSCD 2023年第4期547-563,共17页
Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allo... Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allocation,etc.Modelling of reference evapotranspiration(ET0)using both gene expression programming(GEP)and artificial neural network(ANN)techniques was done using the daily meteorological data of the Pantnagar region,India,from 2010 to 2019.A total of 15 combinations of inputs were used in developing the ET0 models.The model with the least number of inputs consisted of maximum and minimum air temperatures,whereas the model with the highest number of inputs consisted of maximum air temperature,minimum air temperature,mean relative humidity,number of sunshine hours,wind speed at 2mheight and extra-terrestrial radiation as inputs and with ET0 as the output for all the models.All the GEP models were developed for a single functional set and pre-defined genetic operator values,while the best structure in each ANN model was found based on the performance during the testing phase.It was found that ANN models were superior to GEP models for the estimation purpose.It was evident from the reduction in RMSE values ranging from 2%to 56%during training and testing phases in all the ANN models compared with GEP models.The ANN models showed an increase of about 0.96%to 9.72%of R2 value compared to the respective GEP models.The comparative study of these models with multiple linear regression(MLR)depicted that the ANN and GEP models were superior to MLR models. 展开更多
关键词 Artificial Neural Networks Evolutionary algorithms gene expression programming Machine Learning Regression Analysis Reference evapotranspiration MODELS
原文传递
求解复杂多目标优化问题MOEA/D-GEP算法 被引量:9
16
作者 张冬梅 龚小胜 +1 位作者 戴光明 彭雷 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期33-36,共4页
针对复杂多目标优化问题,提出一种基于演化建模的MOEA/D(基于分解的多目标遗传算法)求解算法(MOEA/D-GEP).该算法利用MOEA/D算法思想分解多目标优化问题,对分解后得到的可行解用基于模拟退火的GEP算法建模,从中选取预测值较好的点进入... 针对复杂多目标优化问题,提出一种基于演化建模的MOEA/D(基于分解的多目标遗传算法)求解算法(MOEA/D-GEP).该算法利用MOEA/D算法思想分解多目标优化问题,对分解后得到的可行解用基于模拟退火的GEP算法建模,从中选取预测值较好的点进入下一次真实适应值的计算.采用国际公认的ZDT,DTLZ等测试函数进行实验验证,并与MOEA/D-EGO演化多目标优化算法进行了比较.实验结果表明:该算法在IGD性能指标上有较好的表现,说明将演化建模技术引入MOEA/D算法提高了种群个体分布模型的精度,降低了求解复杂多目标优化问题的计算成本. 展开更多
关键词 复杂多目标优化问题 全局优化算法 基于表达式编程 演化多目标优化 MOEA/D-gep
原文传递
基于GEP的遥感数字图像模糊聚类研究 被引量:7
17
作者 刘海涛 元昌安 +2 位作者 刘海龙 薛琳 李桂来 《计算机工程》 CAS CSCD 北大核心 2010年第10期199-200,238,共3页
针对遥感信息的不确定性和混合像元问题,分析FCM算法。为了避免FCM初值选取不当而陷入局部最优,提出基于基因表达式编程的遥感数字图像模糊聚类算法。该算法可以利用外层GEP算法的全局寻优能力,确定最佳初始聚类中心,再利用内层FCM算法... 针对遥感信息的不确定性和混合像元问题,分析FCM算法。为了避免FCM初值选取不当而陷入局部最优,提出基于基因表达式编程的遥感数字图像模糊聚类算法。该算法可以利用外层GEP算法的全局寻优能力,确定最佳初始聚类中心,再利用内层FCM算法的模糊聚类和局部快速收敛的特性获得遥感数字图像的最优聚类。 展开更多
关键词 基因表达式编程 遥感 数字图像 模糊聚类
在线阅读 下载PDF
基于GRA-GEP的爆破峰值速度预测 被引量:8
18
作者 陈秋松 张钦礼 +2 位作者 陈新 肖崇春 姜群 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第7期2441-2447,共7页
针对在爆破施工中爆破振动危害严重、爆破振动峰值速度难以预测的问题,通过灰色关联度理论和My Eclipse开发工具,建立基于灰色关联度分析(GRA)和基因表达式编程算法(GEP)的GRA-GEP爆破峰值速度预测模型。以湖北铜录山现场露天台阶爆破... 针对在爆破施工中爆破振动危害严重、爆破振动峰值速度难以预测的问题,通过灰色关联度理论和My Eclipse开发工具,建立基于灰色关联度分析(GRA)和基因表达式编程算法(GEP)的GRA-GEP爆破峰值速度预测模型。以湖北铜录山现场露天台阶爆破实测数据进行模拟预测,通过灰色关联度分析,认为最大段药量、总装药量、水平距离、高程差、前排抵抗线长度、测点与最小抵抗线方向夹角等与爆破峰值速度存在相关性,进而为了实现爆破峰值速度进行预测,根据GEP计算思路,采用My Eclipse软件进行Java语言编程模拟运算。研究结果表明:GRA-GEP模型预测结果最大相对误差为14.4%,平均相对误差为7.8%,远低于萨道夫斯基经验公式(平均相对误差30.6%)与BP神经网络预测模型(平均相对误差13.3%)。 展开更多
关键词 爆破振动 爆破峰值速度 灰度关联度分析(GRA-gep) 基因表达式编程算法 预测
在线阅读 下载PDF
优化的GEP算法在爆破振动预测中的应用 被引量:4
19
作者 王斌 张迅 +2 位作者 盛津芳 陈新 史秀志 《计算机工程与应用》 CSCD 北大核心 2016年第22期212-217,共6页
结合主成分分析和基因表达式编程,提出了一种基于PCA的优化基因表达式编程的新算法,并将其应用在爆破振动峰值速度和主频率的预测。该算法首先利用主成份分析方法对影响爆破振动的参数进行预处理,有效地减少预测模型的输入量,消除输入... 结合主成分分析和基因表达式编程,提出了一种基于PCA的优化基因表达式编程的新算法,并将其应用在爆破振动峰值速度和主频率的预测。该算法首先利用主成份分析方法对影响爆破振动的参数进行预处理,有效地减少预测模型的输入量,消除输入数据间的相关性,而后通过基因表达式程序设计建立爆破振动预测模型。结果表明,基于PCA的优化基因表达式编程算法比BP神经网络等其他算法得到的结果具有更高的预测精度和稳定性。 展开更多
关键词 主成分分析 基因表达式编程 预测 爆破振动
在线阅读 下载PDF
基于转基因GEP的公式发现 被引量:3
20
作者 唐常杰 陈瑜 +1 位作者 张欢 段磊 《计算机应用》 CSCD 北大核心 2007年第10期2358-2360,2364,共4页
在传统基因表达式编程(GEP)挖掘知识的过程中,用户只能被动等待程序连续进化若干代之后给出的结果,因此难以有效干预进化过程、质量和速度。为解决这一问题,把生物工程转基因思想引入到基于GEP的函数挖掘中,获得了一系列成果。综述了基... 在传统基因表达式编程(GEP)挖掘知识的过程中,用户只能被动等待程序连续进化若干代之后给出的结果,因此难以有效干预进化过程、质量和速度。为解决这一问题,把生物工程转基因思想引入到基于GEP的函数挖掘中,获得了一系列成果。综述了基于转基因技术的GEP研究进展,包括基因注入,转基因过程和进化干预等,通过自然选择与人工选择的融合,在一定程度上引导进化向着人们预期的方向进行。 展开更多
关键词 数据挖掘 基因表达式编程 转基因技术 基因注入
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部