期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Advanced Machine Learning and Gene Expression Programming Techniques for Predicting CO_(2)-Induced Alterations in Coal Strength
1
作者 Zijian Liu Yong Shi +3 位作者 ChuanqiLi Xiliang Zhang Jian Zhou Manoj Khandelwal 《Computer Modeling in Engineering & Sciences》 2025年第4期153-183,共31页
Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its im... Given the growing concern over global warming and the critical role of carbon dioxide(CO_(2))in this phenomenon,the study of CO_(2)-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration.A large number of experiments have proved that CO_(2) interaction time(T),saturation pressure(P)and other parameters have significant effects on coal strength.However,accurate evaluation of CO_(2)-induced alterations in coal strength is still a difficult problem,so it is particularly important to establish accurate and efficient prediction models.This study explored the application of advancedmachine learning(ML)algorithms and Gene Expression Programming(GEP)techniques to predict CO_(2)-induced alterations in coal strength.Sixmodels were developed,including three metaheuristic-optimized XGBoost models(GWO-XGBoost,SSA-XGBoost,PO-XGBoost)and three GEP models(GEP-1,GEP-2,GEP-3).Comprehensive evaluations using multiple metrics revealed that all models demonstrated high predictive accuracy,with the SSA-XGBoost model achieving the best performance(R2—Coefficient of determination=0.99396,RMSE—Root Mean Square Error=0.62102,MAE—Mean Absolute Error=0.36164,MAPE—Mean Absolute Percentage Error=4.8101%,RPD—Residual Predictive Deviation=13.4741).Model interpretability analyses using SHAP(Shapley Additive exPlanations),ICE(Individual Conditional Expectation),and PDP(Partial Dependence Plot)techniques highlighted the dominant role of fixed carbon content(FC)and significant interactions between FC and CO_(2) saturation pressure(P).Theresults demonstrated that the proposedmodels effectively address the challenges of CO_(2)-induced strength prediction,providing valuable insights for geological storage safety and environmental applications. 展开更多
关键词 CO_(2)-induced coal strength meta-heuristic optimization algorithms XGBoost gene expression programming model interpretability
在线阅读 下载PDF
Evaluation of underground hard rock mine pillar stability using gene expression programming and decision tree-support vector machine models
2
作者 Mohammad H.Kadkhodaei Ebrahim Ghasemi +1 位作者 Jian Zhou Melika Zahraei 《Deep Underground Science and Engineering》 2025年第1期18-34,共17页
Assessing the stability of pillars in underground mines(especially in deep underground mines)is a critical concern during both the design and the operational phases of a project.This study mainly focuses on developing... Assessing the stability of pillars in underground mines(especially in deep underground mines)is a critical concern during both the design and the operational phases of a project.This study mainly focuses on developing two practical models to predict pillar stability status.For this purpose,two robust models were developed using a database including 236 case histories from seven underground hard rock mines,based on gene expression programming(GEP)and decision tree-support vector machine(DT-SVM)hybrid algorithms.The performance of the developed models was evaluated based on four common statistical criteria(sensitivity,specificity,Matthews correlation coefficient,and accuracy),receiver operating characteristic(ROC)curve,and testing data sets.The results showed that the GEP and DT-SVM models performed exceptionally well in assessing pillar stability,showing a high level of accuracy.The DT-SVM model,in particular,outperformed the GEP model(accuracy of 0.914,sensitivity of 0.842,specificity of 0.929,Matthews correlation coefficient of 0.767,and area under the ROC of 0.897 for the test data set).Furthermore,upon comparing the developed models with the previous ones,it was revealed that both models can effectively determine the condition of pillar stability with low uncertainty and acceptable accuracy.This suggests that these models could serve as dependable tools for project managers,aiding in the evaluation of pillar stability during the design and operational phases of mining projects,despite the inherent challenges in this domain. 展开更多
关键词 decision tree-support vector machine(DT-SVM) gene expression programming(GEP) hard rock pillar stability underground mining
原文传递
Prediction of mode I fracture toughness of rock using linear multiple regression and gene expression programming 被引量:4
3
作者 Bijan Afrasiabian Mosleh Eftekhari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1421-1432,共12页
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p... Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors. 展开更多
关键词 Mode I fracture Toughness Critical stress intensity factor Linear multiple regression(LMR) gene expression programming(GEP)
在线阅读 下载PDF
A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method 被引量:3
4
作者 Maral Goharzay Ali Noorzad +1 位作者 Ahmadreza Mahboubi Ardakani Mostafa Jalal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期683-693,共11页
In this context,two different approaches of soil liquefaction evaluation using a soft computing technique based on the worldwide standard penetration test(SPT) databases have been studied.Gene expression programming(G... In this context,two different approaches of soil liquefaction evaluation using a soft computing technique based on the worldwide standard penetration test(SPT) databases have been studied.Gene expression programming(GEP) as a gray-box modeling approach is used to develop different deterministic models in order to evaluate the occurrence of soil liquefaction in terms of liquefaction field performance indicator(LI) and factor of safety(FS) in logistic regression and classification concepts.The comparative plots illustrate that the classification concept-based models show a better performance than those based on logistic regression.In the probabilistic approach,a calibrated mapping function is developed in the context of Bayes’ theorem in order to capture the failure probabilities(PL) in the absence of the knowledge of parameter uncertainty.Consistent results obtained from the proposed probabilistic models,compared to the most well-known models,indicate the robustness of the methodology used in this study.The probability models provide a simple,but also efficient decision-making tool in engineering design to quantitatively assess the liquefaction triggering thresholds. 展开更多
关键词 LIQUEFACTION Soft computing technique gene expression programming(GEP) Deterministic model Bayes' theorem
在线阅读 下载PDF
Scheduling Rules Based on Gene Expression Programming for Resource-Constrained Project Scheduling Problem 被引量:3
5
作者 贾艳 李晋航 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期91-96,共6页
In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select... In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances. 展开更多
关键词 resource-constrained project scheduling problem(RCPSP) gene expression programming(GEP) scheduling rules(SRs)
在线阅读 下载PDF
Modeling viscosity of methane,nitrogen,and hydrocarbon gas mixtures at ultra-high pressures and temperatures using group method of data handling and gene expression programming techniques 被引量:1
6
作者 Farzaneh Rezaei Saeed Jafari +1 位作者 Abdolhossein Hemmati-Sarapardeh Amir H.Mohammadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期431-445,共15页
Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high... Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high temperatures(HPHT).In this study,a number of correlations were developed to estimate gas viscosity by the use of group method of data handling(GMDH)type neural network and gene expression programming(GEP)techniques using a large data set containing more than 3000 experimental data points for methane,nitrogen,and hydrocarbon gas mixtures.It is worth mentioning that unlike many of viscosity correlations,the proposed ones in this study could compute gas viscosity at pressures ranging between 34 and 172 MPa and temperatures between 310 and 1300 K.Also,a comparison was performed between the results of these established models and the results of ten wellknown models reported in the literature.Average absolute relative errors of GMDH models were obtained 4.23%,0.64%,and 0.61%for hydrocarbon gas mixtures,methane,and nitrogen,respectively.In addition,graphical analyses indicate that the GMDH can predict gas viscosity with higher accuracy than GEP at HPHT conditions.Also,using leverage technique,valid,suspected and outlier data points were determined.Finally,trends of gas viscosity models at different conditions were evaluated. 展开更多
关键词 Gas Viscosity High pressure high temperature Group method of data handling gene expression programming
在线阅读 下载PDF
Rules Mining-Based Gene Expression Programming for the Multi-Skill Resource Constrained Project Scheduling Problem 被引量:1
7
作者 Min Hu Zhimin Chen +2 位作者 Yuan Xia Liping Zhang Qiuhua Tang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2815-2840,共26页
Themulti-skill resource-constrained project scheduling problem(MS-RCPSP)is a significantmanagement science problem that extends from the resource-constrained project scheduling problem(RCPSP)and is integrated with a r... Themulti-skill resource-constrained project scheduling problem(MS-RCPSP)is a significantmanagement science problem that extends from the resource-constrained project scheduling problem(RCPSP)and is integrated with a real project and production environment.To solve MS-RCPSP,it is an efficient method to use dispatching rules combined with a parallel scheduling mechanism to generate a scheduling scheme.This paper proposes an improved gene expression programming(IGEP)approach to explore newly dispatching rules that can broadly solve MS-RCPSP.A new backward traversal decoding mechanism,and several neighborhood operators are applied in IGEP.The backward traversal decoding mechanism dramatically reduces the space complexity in the decoding process,and improves the algorithm’s performance.Several neighborhood operators improve the exploration of the potential search space.The experiment takes the intelligent multi-objective project scheduling environment(iMOPSE)benchmark dataset as the training set and testing set of IGEP.Ten newly dispatching rules are discovered and extracted by IGEP,and eight out of ten are superior to other typical dispatching rules. 展开更多
关键词 Project scheduling MULTI-SKILL gene expression programming dispatching rules
在线阅读 下载PDF
Hybrid Gene Expression Programming-Based Sensor Data Correlation Mining
8
作者 Lechan Yang Zhihao Qin +1 位作者 Kun Wang Song Deng 《China Communications》 SCIE CSCD 2017年第1期34-49,共16页
This paper deals with the reflectance estimation model issue to improve the estimation accuracy. We propose a model containing two core procedures: dimensionality reduction and model mining. First, the dimensionality ... This paper deals with the reflectance estimation model issue to improve the estimation accuracy. We propose a model containing two core procedures: dimensionality reduction and model mining. First, the dimensionality reduction algorithm of hyperspectral data based on dependence degree(DRNDDD) is proposed to reduce the redundant hyperspectral band. DRND-DD solves the selection of suitable hyperspectral band via rough set theory. Furthermore, to improve the computation speed and accuracy of the model, based on DRND-DD, this paper proposes reflectance estimation model mining of leaf nitrogen concentration(LNC) for hyperspectral data by using hybrid gene expression programming(REMLNC-HGEP). Experimental results on three datasets demonstrate that the DRND-DD algorithm can obtain good results with a very short running time compared with principal component analysis(PCA), singular value decomposition(SVD), a dimensionality reduction algorithm based on the positive region(AR-PR) and a dimensionality reduction algorithm based on a discernable matrix(ARDM), and REMLNC-HGEP has low average time-consumption, high model mining success ratio and estimation accuracy. It was concluded that the REMLNC-HGEP performs better than the regression methods. 展开更多
关键词 reflectance estimation dimensionality reduction gene expression programming model mining
在线阅读 下载PDF
A true triaxial strength criterion for rocks by gene expression programming
9
作者 Jian Zhou Rui Zhang +1 位作者 Yingui Qiu Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2023年第10期2508-2520,共13页
Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of r... Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of rocks,taking into account the influence of rock genesis on their mechanical behavior during the model building process.A true triaxial strength criterion based on the GEP model for igneous,metamorphic and magmatic rocks was obtained by training the model using collected data.Compared to the modified Weibols-Cook criterion,the modified Mohr-Coulomb criterion,and the modified Lade criterion,the strength criterion based on the GEP model exhibits superior prediction accuracy performance.The strength criterion based on the GEP model has better performance in R2,RMSE and MAPE for the data set used in this study.Furthermore,the strength criterion based on the GEP model shows greater stability in predicting the true triaxial strength of rocks across different types.Compared to the existing strength criterion based on the genetic programming(GP)model,the proposed criterion based on GEP model achieves more accurate predictions of the variation of true triaxial strength(s1)with intermediate principal stress(s2).Finally,based on the Sobol sensitivity analysis technique,the effects of the parameters of the three obtained strength criteria on the true triaxial strength of the rock are analysed.In general,the proposed strength criterion exhibits superior performance in terms of both accuracy and stability of prediction results. 展开更多
关键词 gene expression programming(GEP) True triaxial strength Rock failure criteria Intermediate principal stress
在线阅读 下载PDF
Rapid Prototype Development Approach for Genetic Programming
10
作者 Pei He Lei Zhang 《Journal of Computer and Communications》 2024年第2期67-79,共13页
Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of ... Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals. 展开更多
关键词 genetic programming Grammatical Evolution gene expression programming Regression Analysis Mathematical Modeling Rapid Prototype Development
在线阅读 下载PDF
Modelling reference evapotranspiration using gene expression programming and artificial neural network at Pantnagar,India
11
作者 Pangam Heramb Pramod Kumar Singh +1 位作者 K.V.Ramana Rao A.Subeesh 《Information Processing in Agriculture》 EI CSCD 2023年第4期547-563,共17页
Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allo... Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allocation,etc.Modelling of reference evapotranspiration(ET0)using both gene expression programming(GEP)and artificial neural network(ANN)techniques was done using the daily meteorological data of the Pantnagar region,India,from 2010 to 2019.A total of 15 combinations of inputs were used in developing the ET0 models.The model with the least number of inputs consisted of maximum and minimum air temperatures,whereas the model with the highest number of inputs consisted of maximum air temperature,minimum air temperature,mean relative humidity,number of sunshine hours,wind speed at 2mheight and extra-terrestrial radiation as inputs and with ET0 as the output for all the models.All the GEP models were developed for a single functional set and pre-defined genetic operator values,while the best structure in each ANN model was found based on the performance during the testing phase.It was found that ANN models were superior to GEP models for the estimation purpose.It was evident from the reduction in RMSE values ranging from 2%to 56%during training and testing phases in all the ANN models compared with GEP models.The ANN models showed an increase of about 0.96%to 9.72%of R2 value compared to the respective GEP models.The comparative study of these models with multiple linear regression(MLR)depicted that the ANN and GEP models were superior to MLR models. 展开更多
关键词 Artificial Neural Networks Evolutionary algorithms gene expression programming Machine Learning Regression Analysis Reference evapotranspiration MODELS
原文传递
Predicting the minimum horizontal principal stress using genetic expression programming and borehole breakout data
12
作者 Rui Zhang Jian Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4227-4240,共14页
As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression progra... As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression programming(GEP)algorithm-based model,in which the data of borehole breakout size,vertical principal stress,and rock strength characteristics are used as the inputs,is proposed to predict the minimum horizontal principal stress.Seventy-nine(79)samples with seven features are collected to construct the minimum horizontal principal stress dataset used for training models.Twenty-four(24)GEP model hyperparameter sets were configured to explore the key parameter combinations among the inputs and their potential relationships with the minimum horizontal principal stresses.Model performance was evaluated using root mean squared error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R^(2)).By comparing predictive performance and parameter composition,two models were selected from 24 GEP models that demonstrated excellent predictive performance and simpler parameter composition.Compared with prevalent models,the results indicate that the two selected GEP models have better performance on the test set(R^(2)=0.9568 and 0.9621).Additionally,the results conducted by SHapley Additive exPlanations(SHAP)sensitivity analysis and Local Interpretable Model-agnostic Explanations(LIME)demonstrate that the vertical principal stress is the most influential parameter in both GEP models.The two GEP models have simple parameter compositions as well as stable and excellent prediction performance,which is a viable method for predicting the minimum horizontal principal stresses. 展开更多
关键词 gene expression programming(GEP) In situ stresses Minimum horizontal principal stresses Borehole breakout
在线阅读 下载PDF
Smart prediction of liquefaction-induced lateral spreading 被引量:1
13
作者 Muhammad Nouman Amjad Raja Tarek Abdoun Waleed El-Sekelly 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2310-2325,共16页
The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(... The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively. 展开更多
关键词 Lateral spreading Intelligent modeling gene expression programming(GEP) Closed-form solution Feature importance
在线阅读 下载PDF
Identification of partial differential equations from noisy data with integrated knowledge discovery and embedding using evolutionary neural networks
14
作者 Hanyu Zhou Haochen Li Yaomin Zhao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期90-97,共8页
Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extr... Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extract accurate governing equations under noisy conditions without prior knowledge.Specifically,the proposed method combines gene expression programming,one type of evolutionary algorithm capable of generating unseen terms based solely on basic operators and functional terms,with symbolic regression neural networks.These networks are designed to represent explicit functional expressions and optimize them with data gradients.In particular,the specifically designed neural networks can be easily transformed to physical constraints for the training data,embedding the discovered PDEs to further optimize the metadata used for iterative PDE identification.The proposed method has been tested in four canonical PDE cases,validating its effectiveness without preliminary information and confirming its suitability for practical applications across various noise levels. 展开更多
关键词 PDE discovery gene expression programming Deep Learning Knowledge embedding
在线阅读 下载PDF
Single-cell network analysis reveals gene expression programs for Arabidopsis root development and metabolism
15
作者 Ershang Han Zhenxing Geng +2 位作者 Yue Qin Yuewei Wang Shisong Ma 《Plant Communications》 SCIE CSCD 2024年第8期32-49,共18页
Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated,but related comprehensive gene co-expression network analyses are lacking.We conducted a single-cell gene co-expression network analysis wit... Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated,but related comprehensive gene co-expression network analyses are lacking.We conducted a single-cell gene co-expression network analysis with publicly available scRNA-seq datasets of Arabidopsis roots using a SingleCellGGM algorithm.The analysis identified 149 gene co-expression modules,which we considered to be gene expression programs(GEPs).By examining their spatiotemporal expression,we identified GEPs specifically expressed in major root cell types along their developmental trajectories.These GEPs define gene programs regulating root cell development at different stages and are enriched with relevant developmental regulators.As examples,a GEP specific for the quiescent center(QC)contains 20 genes regulating QC and stem cell niche homeostasis,and four GEPs are expressed in sieve elements(SEs)from early to late developmental stages,with the early-stage GEP containing 17 known SE developmental regulators.We also identified GEPs for metabolic pathways with cell-type-specific expression,suggesting the existence of cell-type-specific metabolism in roots.Using the GEPs,we discovered and verified a columellaspecific gene,NRL27,as a regulator of the auxin-related root gravitropism response.Our analysis thus systematically reveals GEPs that regulate Arabidopsis root development and metabolism and provides ample resources for root biology studies. 展开更多
关键词 single-cell RNA sequencing single-cell gene co-expression network analysis gene expression program Arabidopsis root development NRL27 GRAVITROPISM
原文传递
Energy Consumption Prediction of a CNC Machining Process With Incomplete Data 被引量:6
16
作者 Jian Pan Congbo Li +2 位作者 Ying Tang Wei Li Xiaoou Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期987-1000,共14页
Energy consumption prediction of a CNC machining process is important for energy efficiency optimization strategies.To improve the generalization abilities,more and more parameters are acquired for energy prediction m... Energy consumption prediction of a CNC machining process is important for energy efficiency optimization strategies.To improve the generalization abilities,more and more parameters are acquired for energy prediction modeling.While the data collected from workshops may be incomplete because of misoperation,unstable network connections,and frequent transfers,etc.This work proposes a framework for energy modeling based on incomplete data to address this issue.First,some necessary preliminary operations are used for incomplete data sets.Then,missing values are estimated to generate a new complete data set based on generative adversarial imputation nets(GAIN).Next,the gene expression programming(GEP)algorithm is utilized to train the energy model based on the generated data sets.Finally,we test the predictive accuracy of the obtained model.Computational experiments are designed to investigate the performance of the proposed framework with different rates of missing data.Experimental results demonstrate that even when the missing data rate increases to 30%,the proposed framework can still make efficient predictions,with the corresponding RMSE and MAE 0.903 k J and 0.739 k J,respectively. 展开更多
关键词 Energy consumption prediction incomplete data generative adversarial imputation nets(GAIN) gene expression programming(GEP)
在线阅读 下载PDF
An Evolutionary Algorithm for Non-Destructive Reverse Engineering of Integrated Circuits 被引量:1
17
作者 Huan Zhang Jiliu Zhou Xi Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1151-1175,共25页
In hardware Trojan detection technology, destructive reverse engineering can restore an original integrated circuitwith the highest accuracy. However, this method has a much higher overhead in terms of time, effort, a... In hardware Trojan detection technology, destructive reverse engineering can restore an original integrated circuitwith the highest accuracy. However, this method has a much higher overhead in terms of time, effort, and cost thanbypass detection. This study proposes an algorithm, called mixed-feature gene expression programming, whichapplies non-destructive reverse engineering to the chip with bypass detection data. It aims to recover the originalintegrated circuit hardware, or else reveal the unknown circuit design in the chip. 展开更多
关键词 Hardware Trojans Trojan detection mixed-feature gene expression programming
在线阅读 下载PDF
Local vs. cross station simulation of suspended sediment load in successive hydrometric stations: heuristic modeling approach 被引量:1
18
作者 Kiyoumars ROUSHANGAR Shabnam HOSSEINZADEH Jalal SHIRI 《Journal of Mountain Science》 SCIE CSCD 2016年第10期1773-1788,共16页
The present paper aims at modeling suspended sediment load(SSL) using heuristic data driven methodologies, e.g. Gene Expression Programming(GEP) and Support Vector Machine(SVM) in three successive hydrometric stations... The present paper aims at modeling suspended sediment load(SSL) using heuristic data driven methodologies, e.g. Gene Expression Programming(GEP) and Support Vector Machine(SVM) in three successive hydrometric stations of Housatonic River in U.S. The simulations were carried out through local and cross-station data management scenarios to investigate the interrelations between the SSL values of upstream/downstream stations. The available scenarios were applied to predict SSL values using GEP to obtain the best models. Then, the best models were predicted by SVM approach and the obtained results were compared with those of GEP. The comparison of the results revealed that the SVM technique is more capable than the GEP for modeling the SSL through the both local and cross-station data management strategies. Besides, local application seems to be better than cross-station application for modeling SSL. Nevertheless, the cross-station application demonstrated to be a valid methodology for simulating SSL, which would be of interest for the stations with lack of observational data. Also, the prediction capability of conventional Sediment Rating Curve(SRC) method was compared with those of GEPand SVM techniques. The obtained results revealed the superiority of GEP and SVM-based models over the traditional SRC technique in the studied stations. 展开更多
关键词 Suspended sediment load Successive hydrometric stations gene expression programming Support vector machine
原文传递
Modeling of shear wave velocity in limestone by soft computing methods 被引量:2
19
作者 Behnia Danial Ahangari Kaveh Moeinossadat Sayed Rahim 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期423-430,共8页
The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have... The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future. 展开更多
关键词 Shear wave velocity Limestone Neuro-genetic Adaptive neuro-fuzzy inference system gene expression programming
在线阅读 下载PDF
Settlement modeling in central core rockfill dams by new approaches 被引量:2
20
作者 Behnia D. Ahangari K. +2 位作者 Goshtasbi K. Moeinossadat S.R. Behnia M. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期703-710,共8页
One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study... One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study aims to apply intelligent methods to predict settlement after constructing central core rockfill dams.Attempts were made in this research to prepare models for predicting settlement of these dams using the information of 35 different central core rockfill dams all over the world and Adaptive Neuro-Fuzzy Interface System(ANFIS) and Gene Expression Programming(GEP) methods.Parameters such as height of dam(H) and compressibility index(Ci) were considered as the input parameters.Finally,a form was designed using visual basic software for predicting dam settlement.With respect to the accuracy of the results obtained from the intelligent methods,they can be recommended for predicting settlement after constructing central core rockfill dams for the future plans. 展开更多
关键词 Settlement Adaptive Neuro-Fuzzy Interface System(ANFIS)gene expression programming (GEP)Visual Basic (VB)
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部