Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically st...Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically stable yellow-green leaf mutant ygl16 was identified from mutated“Xinong 1B”.Compared with the wild type,the pigment concentration and photosynthetic capacity of the ygl16 decreased significantly.The ultrastructural observation showed that the distribution of thylakoid lamellae was irregular in ygl16 chloroplasts,and the grana and matrix lamellae were blurred and loose in varied degrees,and the chloroplast structure was disordered,while the osmiophilic corpuscles increased.The results of the genetic analysis and mapping showed that the phenotype of ygl16 was controlled by a pair of recessive nuclear gene.The gene located in the 56Kb interval between RM25654 and R3 on the long arm of chromosome 10.The sequencing results showed that the 121st base of the first intron of the candidate gene OsPORB/FGL changed from A to T in the interval.qRT-PCR results showed that the expression of chlorophyll synthase-related genes in the mutant decreased.展开更多
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development...Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.展开更多
Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations...Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.展开更多
Plant height is one of the important agronomic traits of rice. Over higher plant would easily result in plant lodging and output reducing. On the other hand, the dwarf varieties with proper plant height had higher lod...Plant height is one of the important agronomic traits of rice. Over higher plant would easily result in plant lodging and output reducing. On the other hand, the dwarf varieties with proper plant height had higher lodging resistance and a greater harvest index, allowing for the increased use of nitrogen fertilizer. Dwarf breeding had made a great breakthrough in the rice breeding. The breeding and extension of excellent dwarf varieties remarkably improved the yield potential of rice. Therefore, the plant height is still one of the focuses in rice genetic research.展开更多
A strain of gram-positive bacillus was isolated from suppurative lung organs of nursery pigs in a pig farm, which was further characterized by morphological observation, cultivation test, biochemical test, drug sensit...A strain of gram-positive bacillus was isolated from suppurative lung organs of nursery pigs in a pig farm, which was further characterized by morphological observation, cultivation test, biochemical test, drug sensitivity test, pathogenicity test and 16S rDNA gene cloning and sequence analysis. The results showed that the isolate grew well in rabbit blood agar plate and horse serum tryptone soybean agar (TSA) plate under aerobic condition, which could lead to mortality of mice and were susceptible to cephalosporin antibiotics and fluoroquinolone antibiotics. Phylogenetic analysis showed that the isolate had close genetic evolutionary relationships with Corynebacterium bacteria, and the sequence of 16S rRNA gene shared the homology of 91.7% -98.3% with the representative strain of coryne- bacteria, indicating the isolated strain was eorynebactefium.展开更多
Many eukaryotic genes are members of multi-gene families due to gene duplications, which generate new copies that allow functional divergence. However, the relationship between
Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in...Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.展开更多
AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression lev...AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression levels and patient clinic features. Uveal melanoma is the most common primary eye tumor in adults. Although many studies have identified some important genes and pathways that were relevant to progress of uveal melanoma, the relationship between co-expression and clinic traits in systems level of uveal melanoma is unclear yet. We employ WGCNA to investigate the relationship underlying molecular and phenotype in this study.METHODS: Gene expression profile of uveal melanoma and patient clinic traits were collected from the Gene Expression Omnibus(GEO) database. The gene co-expression is calculated by WGCNA that is the R package software. The package is used to analyze the correlation between pairs of expression levels of genes.The function of the genes were annotated by gene ontology(GO).RESULTS: In this study, we identified four co-expression modules significantly correlated with clinictraits. Module blue positively correlated with radiotherapy treatment. Module purple positively correlates with tumor location(sclera) and negatively correlates with patient age. Module red positively correlates with sclera and negatively correlates with thickness of tumor. Module black positively correlates with the largest tumor diameter(LTD). Additionally, we identified the hug gene(top connectivity with other genes) in each module. The hub gene RPS15 A, PTGDS, CD53 and MSI2 might play a vital role in progress of uveal melanoma.CONCLUSION: From WGCNA analysis and hub gene calculation, we identified RPS15 A, PTGDS, CD53 and MSI2 might be target or diagnosis for uveal melanoma.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Study of gene expression has been arguably the most active research field in functional genomics.Over the last two decades,various high-throughput technologies,from gene expression microarray to RNA-seq,have been wide...Study of gene expression has been arguably the most active research field in functional genomics.Over the last two decades,various high-throughput technologies,from gene expression microarray to RNA-seq,have been widely applied to the wholegenome profiling of gene expression.The commonality of these experiments is that they measure the gene expression levels of"bulk"sample,which pools a large number(often in the scale of millions)of cells,and thus the measurements reflect the average expression展开更多
Objective: In this study, we aimed to expand current knowledge of head and neck squamous cell carcinoma (HNSCC)-associated long noncoding RNAs (IncRNAs), and to discover potential IncRNA prognostic biomarkers for...Objective: In this study, we aimed to expand current knowledge of head and neck squamous cell carcinoma (HNSCC)-associated long noncoding RNAs (IncRNAs), and to discover potential IncRNA prognostic biomarkers for HNSCC based on next-generation RNA-seq. Methods: RNA-seq data of 546 samples from patients with HNSCC were downloaded from The Cancer Genome Atlas (TCGA), including 43 paired samples of tumor tissue and adjacent normal tissue. An integrated analysis incorporating differential expression, weighted gene co-expression networks, functional enrichment, clinical parameters, and survival analysis was conducted to discover HNSCC-associated IncRNAs. The function of CYTOR was verified by cell-based experiments. To further identify IncRNAs with prognostic significance, a multivariate Cox proportional hazard regression analysis was performed. The identified IncRNAs were validated with an independent cohort using clinical feature relevance analysis and multivariate Cox regression analysis. Results: We identified nine HNSCC-relevant IncRNAs likely to play pivotal roles in HNSCC onset and development. By functional enrichment analysis, we revealed that CYTOR might participate in the multistep pathological processes of cancer, such as ribosome biogenesis and maintenance of genomic stability. CY-I-OR was identified to be positively correlated with lymph node metastasis, and significantly negatively correlated with overall survival (OS) and disease free survival (DFS) of HNSCC patients. Moreover, CYTOR inhibited cell apoptosis following treatment with the chemotherapeutic drug diamminedichloroplatinum (DDP). HCG22, the most dramatically down-regulated IncRNA in tumor tissue, may function in epidermis differentiation. It was also significantly associated with several clinical features of patients with HNSCC, and positively correlated with patient survival. CYTOR and HCG22 maintained their prognostic values in- dependent of several clinical features in multivariate Cox hazards analysis. Notably, validation either based on an independent HNSCC cohort or by laboratory experiments confirmed these findings. Conclusions: Our transcriptomic analysis suggested that dysregulation of these HNSCC-associated IncRNAs might be involved in HNSCC oncogenesis and progression. Moreover, CYTOR and HCG22 were confirmed as two independent prognostic factors for HNSCC patient survival, providing new insights into the roles of these IncRNAs in HNSCC as well as clinical applications.展开更多
Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore,investigating how axon regeneration and degeneration work together to repair perip...Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore,investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the molecular mechanisms and signal cascades underlying peripheral nerve repair and provide potential strategies for improving the low axon regeneration capacity of the central nervous system.In this study,we applied weighted gene co-expression network analysis to identify differentially expressed genes in proximal and distal sciatic nerve segments from rats with sciatic nerve injury.We identified 31 and 15 co-expression modules from the proximal and distal sciatic nerve segments,respectively.Functional enrichment analysis revealed that the differentially expressed genes in proximal modules promoted regeneration,while the differentially expressed genes in distal modules promoted neurodegeneration.Next,we constructed hub gene networks for selected modules and identified a key hub gene,Kif22,which was up-regulated in both nerve segments.In vitro experiments confirmed that Kif22 knockdown inhibited proliferation and migration of Schwann cells by modulating the activity of the extracellular signal-regulated kinase signaling pathway.Collectively,our findings provide a comparative framework of gene modules that are co-expressed in injured proximal and distal sciatic nerve segments,and identify Kif22 as a potential therapeutic target for promoting peripheral nerve injury repair via Schwann cell proliferation and migration.All animal experiments were approved by the Institutional Animal Ethics Committee of Nantong University,China(approval No.S20210322-008)on March 22,2021.展开更多
Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict t...Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict the prognosis of esophageal cancer. The matched microarray and RNA sequencing data of 185 patients with esophageal cancer were downloaded from The Cancer Genome Atlas(TCGA), and gene co-expression networks were built without distinguishing between squamous carcinoma and adenocarcinoma. The result showed that 12 modules were associated with one or more survival data such as recurrence status, recurrence time, vital status or vital time. Furthermore, survival analysis showed that 5 out of the 12 modules were related to progression-free survival(PFS) or overall survival(OS). As the most important module, the midnight blue module with 82 genes was related to PFS, apart from the patient age, tumor grade, primary treatment success, and duration of smoking and tumor histological type. Gene ontology enrichment analysis revealed that 'glycoprotein binding' was the top enriched function of midnight blue module genes. Additionally, the blue module was the exclusive gene clusters related to OS. Platelet activating factor receptor(PTAFR) and feline Gardner-Rasheed(FGR) were the top hub genes in both modeling datasets and the STRING protein interaction database. In conclusion, our study provides novel insights into the prognosis-associated genes and screens out candidate biomarkers for esophageal cancer.展开更多
The neural regeneration process is driven by a wide range of molecules and pathways. Adherens junctions are critical cellular junctions for the integrity of peripheral nerves. However, few studies have systematically ...The neural regeneration process is driven by a wide range of molecules and pathways. Adherens junctions are critical cellular junctions for the integrity of peripheral nerves. However, few studies have systematically characterized the transcript changes in the adherens junction pathway following injury. In this study, a rat model of sciatic nerve crush injury was established by forceps. Deep sequencing data were analyzed using comprehensive transcriptome analysis at 0, 1, 4, 7, and 14 days after injury. Results showed that most individual molecules in the adherens junctions were either upregulated or downregulated after nerve injury. The m RNA expression of ARPC1 B, ARPC3, TUBA8, TUBA1 C, CTNNA2, ACTN3, MET, HGF, NME1 and ARF6, which are involved in the adherens junction pathway and in remodeling of adherens junctions, was analyzed using quantitative real-time polymerase chain reaction. Most of these genes were upregulated in the sciatic nerve stump following peripheral nerve injury, except for CTNNA2, which was downregulated. Our findings reveal the dynamic changes of key molecules in adherens junctions and in remodeling of adherens junctions. These key genes provide a reference for the selection of clinical therapeutic targets for peripheral nerve injury.展开更多
Objective Alzheimer's disease(AD)is the most common cause of dementia.The pathophysiology of the disease mostly remains unearthed,thereby challenging drug development for AD.This study aims to screen high throughp...Objective Alzheimer's disease(AD)is the most common cause of dementia.The pathophysiology of the disease mostly remains unearthed,thereby challenging drug development for AD.This study aims to screen high throughput gene expression data using weighted co-expression network analysis(WGCNA)to explore the potential therapeutic targets.Methods The dataset of GSE36980 was obtained from the Gene Expression Omnibus(GEO)database.Normalization,quality control,filtration,and soft-threshold calculation were carried out before clustering the co-expressed genes into different modules.Furthermore,the correlation coefiidents between the modules and clinical traits were computed to identify the key modules.Gene ontology and pathway enrichment analyses were performed on the key module genes.The STRING database was used to construct the protein-protein interaction(PPI)networks,which were further analyzed by Cytoscape app(MCODE).Finally,validation of hub genes was conducted by external GEO datasets of GSE 1297 and GSE 28146.Results Co-expressed genes were clustered into 27 modules,among which 6 modules were identified as the key module relating to AD occurrence.These key modules are primarily involved in chemical synaptic transmission(G0:0007268),the tricarboxylic acid(TCA)cycle and respiratory electron transport(R-HSA-1428517).WDR47,OXCT1,C3orfl4,ATP6V1A,SLC25A14,NAPB were found as the hub genes and their expression were validated by external datasets.Conclusions Through modules co-expression network analyses and PPI network analyses,we identified the hub genes of AD,including WDR47,0XCT1,C3orfl4i ATP6V1A,SLC25A14 and NAPB.Among them,three hub genes(ATP6V1A,SLC25A14,OXCT1)might contribute to AD pathogenesis through pathway of TCA cycle.展开更多
Objective:The present study was aimed to identify novel key genes,prognostic biomarkers and molecular pathways implicated in tumorigenesis of colon cancer.Methods:The microarray data GSE41328 containing 10 colon cance...Objective:The present study was aimed to identify novel key genes,prognostic biomarkers and molecular pathways implicated in tumorigenesis of colon cancer.Methods:The microarray data GSE41328 containing 10 colon cancer samples and 10 adjacent normal tissues was analyzed to identify 4763 differentially expressed genes.Meanwhile,another microarray data GSE17536 was performed for weighted gene co-expression network analysis(WGCNA).Results:In present study,12 co-expressed gene modules associated with tumor progression were identified for further studies.The red module showed the highest association with pathological stage by Pearson's correlation analysis.Functional enrichment analysis revealed that genes in red module focused on cell division,cell proliferation,cell cycle and metabolic related pathway.Then,a total of 26 key hub genes were identified,and GEPIA database was subsequently selected for validation.Holliday junction-recognizing protein(HJURP)and cell division cycle 25 homolog C(CDC25C)were identified as effective prognosis biomarkers,which were all detrimental to prognosis.Gene set enrichment analyses(GSEA)found the two hub genes were enriched in“oocyte meiosis”,“oocyte maturation that are progesterone-mediated”,“p53 signaling pathway”,and“cell cycle”.Furthermore,the immunohistochemistry and western blotting showed that HJURP was highly expressed in colon cancer tissue.Conclusion:HJURP was identified as a key gene associated with colon cancer progression and prognosis by WGCNA,which might influence the prognosis by regulating cell cycle pathways.展开更多
Linoleic acid is an essential polyunsaturated fatty acid that cannot be synthesized by humans or animals themselves and can only be obtained externally.The amount of linoleic acid present has an impact on the quality ...Linoleic acid is an essential polyunsaturated fatty acid that cannot be synthesized by humans or animals themselves and can only be obtained externally.The amount of linoleic acid present has an impact on the quality and flavour of meat and indirectly affects consumer preference.However,the molecular mechanisms influencing the deposition of linoleic acid in organisms are not clear.As the molecular mechanisms of linoleic acid deposition are not well understood,to investigate the main effector genes affecting the linoleic acid content,this study aimed to screen for hub genes in slow-type yellow-feathered chickens by transcriptome sequencing(RNA-Seq)and weighted gene coexpression network analysis(WGCNA).We screened for candidate genes associated with the linoleic acid content in slow-type yellow-feathered broilers.A total of 399 Tiannong partridge chickens were slaughtered at 126 days of age,fatty acid levels were measured in pectoral muscle,and pectoral muscle tissue was collected for transcriptome sequencing.Transcriptome sequencing results were combined with phenotypes for WGCNA to screen for candidate genes.KEGG enrichment analysis was also performed on the genes that were significantly enriched in the modules with the highest correlation.A total of 13310 genes were identified after quality control of transcriptomic data from 399 pectoral muscle tissues.WGCNA was performed,and a total of 26 modules were obtained,eight of which were highly correlated with the linoleic acid content.Four key genes,namely,MDH2,ATP5B,RPL7A and PDGFRA,were screened according to the criteria|GS|>0.2 and|MM|>0.8.The functional enrichment results showed that the genes within the target modules were mainly enriched in metabolic pathways.In this study,a large-sample-size transcriptome analysis revealed that metabolic pathways play an important role in the regulation of the linoleic acid content in Tiannong partridge chickens,and MDH2,ATP5B,RPL7A and PDGFRA were screened as important candidate genes affecting the linoleic acid content.The results of this study provide a theoretical basis for selecting molecular markers and comprehensively understanding the molecular mechanism affecting the linoleic acid content in muscle,providing an important reference for the breeding of slow-type yellowfeathered broiler chickens.展开更多
Auxin plays important roles in various aspects of plant growth and development (Zhao, 2010). In Arabidopsis, a number of YUCCA (YUC) genes, which are involved in auxin biosyn- thesis, have been identified (Zhao e...Auxin plays important roles in various aspects of plant growth and development (Zhao, 2010). In Arabidopsis, a number of YUCCA (YUC) genes, which are involved in auxin biosyn- thesis, have been identified (Zhao et al., 2001; Woodward et al., 2005; Cheng et al., 2006, 2007; Kim et al., 2007; Chen et al., 2014). YUC genes encode flavin monooxygenases (FMOs) that convert indole-3-pyruvate (IPA) to indole-3-acetic acid (IAA) (Zhao, 2012). The Arabidopsis YUC family is comprised of 11 members (Zhao et al., 2001;展开更多
Cardiomyopathies represent the most common clinical and genetic heterogeneous group of diseases that affect the heart function.Though progress has been made to elucidate the process,molecular mechanisms of different c...Cardiomyopathies represent the most common clinical and genetic heterogeneous group of diseases that affect the heart function.Though progress has been made to elucidate the process,molecular mechanisms of different classes of cardiomyopathies remain elusive.This paper aims to describe the similarities and differences in molecular features of dilated cardiomyopathy(DCM)and ischemic cardiomyopathy(ICM).We firstly detected the co-expressed modules using the weighted gene co-expression network analysis(WGCNA).Significant modules associated with DCM/ICM were identified by the Pearson correlation coefficient(PCC)between the modules and the phenotype of DCM/ICM.The differentially expressed genes in the modules were selected to perform functional enrichment.The potential transcription factors(TFs)prediction was conducted for transcription regulation of hub genes.Apoptosis and cardiac conduction were perturbed in DCM and ICM,respectively.TFs demonstrated that the biomarkers and the transcription regulations in DCM and ICM were different,which helps make more accurate discrimination between them at molecular levels.In conclusion,comprehensive analyses of the molecular features may advance our understanding of DCM and ICM causes and progression.Thus,this understanding may promote the development of innovative diagnoses and treatments.展开更多
基金supported by grants from the Project of Creating High Quality,Disease Resistance and High Combining Ability CMS Lines(Grant No.cstc2018jscx-msybX0250)Chongqing Technology Innovation and Application Demonstration Project and the Project of High Photosynthetic Efficiency Rice Breeding Technology System(Grant No.2017YFD0100201)the National Key Research and Development Program“Seven Crops Breeding”.
文摘Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically stable yellow-green leaf mutant ygl16 was identified from mutated“Xinong 1B”.Compared with the wild type,the pigment concentration and photosynthetic capacity of the ygl16 decreased significantly.The ultrastructural observation showed that the distribution of thylakoid lamellae was irregular in ygl16 chloroplasts,and the grana and matrix lamellae were blurred and loose in varied degrees,and the chloroplast structure was disordered,while the osmiophilic corpuscles increased.The results of the genetic analysis and mapping showed that the phenotype of ygl16 was controlled by a pair of recessive nuclear gene.The gene located in the 56Kb interval between RM25654 and R3 on the long arm of chromosome 10.The sequencing results showed that the 121st base of the first intron of the candidate gene OsPORB/FGL changed from A to T in the interval.qRT-PCR results showed that the expression of chlorophyll synthase-related genes in the mutant decreased.
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
基金supported by the National Key Research and Development Program of China(No.2021YFD2200304)FundamentalResearch Funds for the Central Universities(2572022DQ08)the National Natural Science Foundation of China(No32171738).
文摘Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.
基金supported by grants from the Tianjin Health Technology Project(Grant no.2022QN106).
文摘Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.
文摘Plant height is one of the important agronomic traits of rice. Over higher plant would easily result in plant lodging and output reducing. On the other hand, the dwarf varieties with proper plant height had higher lodging resistance and a greater harvest index, allowing for the increased use of nitrogen fertilizer. Dwarf breeding had made a great breakthrough in the rice breeding. The breeding and extension of excellent dwarf varieties remarkably improved the yield potential of rice. Therefore, the plant height is still one of the focuses in rice genetic research.
基金Supported by Research Project of Guangxi Bureau of Fishery Sciences and Animal Husbandry and Veterinary(GYMK 12049031,1304522)Research Project of Xixiangtang District in Nanning City(2014304,2014302)Systematic Research Project for Key Laboratory of Livestock and Poultry Vaccine New Technology in Guangxi Province(12-071-28-A-5)
文摘A strain of gram-positive bacillus was isolated from suppurative lung organs of nursery pigs in a pig farm, which was further characterized by morphological observation, cultivation test, biochemical test, drug sensitivity test, pathogenicity test and 16S rDNA gene cloning and sequence analysis. The results showed that the isolate grew well in rabbit blood agar plate and horse serum tryptone soybean agar (TSA) plate under aerobic condition, which could lead to mortality of mice and were susceptible to cephalosporin antibiotics and fluoroquinolone antibiotics. Phylogenetic analysis showed that the isolate had close genetic evolutionary relationships with Corynebacterium bacteria, and the sequence of 16S rRNA gene shared the homology of 91.7% -98.3% with the representative strain of coryne- bacteria, indicating the isolated strain was eorynebactefium.
文摘Many eukaryotic genes are members of multi-gene families due to gene duplications, which generate new copies that allow functional divergence. However, the relationship between
基金supported by Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding(Grant No.G20220628003-03)Chongqing Municipal People's Government and Chinese Academy of Agricultural Sciences strategic cooperation project,Key-Area Research and Development Program of Guangdong Province(Grant No.2020B020220001)+3 种基金the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.CARS-23)Science and Technology Innovation Program of the Chinese Academy of Agricultural Science(Grant No.CAAS-ASTIP-IVFCAAS)Central public-interest Scientific Institution Basal Research Fund(Grant No.Y2017PT52)the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China。
文摘Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.
基金Supported by the National Natural Science Foundation of China(No.81271019No.61463046)Gansu Province Science Foundation for Youths(No.145RJYA282)
文摘AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression levels and patient clinic features. Uveal melanoma is the most common primary eye tumor in adults. Although many studies have identified some important genes and pathways that were relevant to progress of uveal melanoma, the relationship between co-expression and clinic traits in systems level of uveal melanoma is unclear yet. We employ WGCNA to investigate the relationship underlying molecular and phenotype in this study.METHODS: Gene expression profile of uveal melanoma and patient clinic traits were collected from the Gene Expression Omnibus(GEO) database. The gene co-expression is calculated by WGCNA that is the R package software. The package is used to analyze the correlation between pairs of expression levels of genes.The function of the genes were annotated by gene ontology(GO).RESULTS: In this study, we identified four co-expression modules significantly correlated with clinictraits. Module blue positively correlated with radiotherapy treatment. Module purple positively correlates with tumor location(sclera) and negatively correlates with patient age. Module red positively correlates with sclera and negatively correlates with thickness of tumor. Module black positively correlates with the largest tumor diameter(LTD). Additionally, we identified the hug gene(top connectivity with other genes) in each module. The hub gene RPS15 A, PTGDS, CD53 and MSI2 might play a vital role in progress of uveal melanoma.CONCLUSION: From WGCNA analysis and hub gene calculation, we identified RPS15 A, PTGDS, CD53 and MSI2 might be target or diagnosis for uveal melanoma.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
基金partially supported by NIH grants (2U19AI090023,5P30AI50409,and R01GM122083)
文摘Study of gene expression has been arguably the most active research field in functional genomics.Over the last two decades,various high-throughput technologies,from gene expression microarray to RNA-seq,have been widely applied to the wholegenome profiling of gene expression.The commonality of these experiments is that they measure the gene expression levels of"bulk"sample,which pools a large number(often in the scale of millions)of cells,and thus the measurements reflect the average expression
基金Project supported by the National Natural Science Foundation of China(Nos.31471226 and 91440108)the Fundamental Research Funds for the Central Universities(Nos.WK2070000044 and WK2070000034),China
文摘Objective: In this study, we aimed to expand current knowledge of head and neck squamous cell carcinoma (HNSCC)-associated long noncoding RNAs (IncRNAs), and to discover potential IncRNA prognostic biomarkers for HNSCC based on next-generation RNA-seq. Methods: RNA-seq data of 546 samples from patients with HNSCC were downloaded from The Cancer Genome Atlas (TCGA), including 43 paired samples of tumor tissue and adjacent normal tissue. An integrated analysis incorporating differential expression, weighted gene co-expression networks, functional enrichment, clinical parameters, and survival analysis was conducted to discover HNSCC-associated IncRNAs. The function of CYTOR was verified by cell-based experiments. To further identify IncRNAs with prognostic significance, a multivariate Cox proportional hazard regression analysis was performed. The identified IncRNAs were validated with an independent cohort using clinical feature relevance analysis and multivariate Cox regression analysis. Results: We identified nine HNSCC-relevant IncRNAs likely to play pivotal roles in HNSCC onset and development. By functional enrichment analysis, we revealed that CYTOR might participate in the multistep pathological processes of cancer, such as ribosome biogenesis and maintenance of genomic stability. CY-I-OR was identified to be positively correlated with lymph node metastasis, and significantly negatively correlated with overall survival (OS) and disease free survival (DFS) of HNSCC patients. Moreover, CYTOR inhibited cell apoptosis following treatment with the chemotherapeutic drug diamminedichloroplatinum (DDP). HCG22, the most dramatically down-regulated IncRNA in tumor tissue, may function in epidermis differentiation. It was also significantly associated with several clinical features of patients with HNSCC, and positively correlated with patient survival. CYTOR and HCG22 maintained their prognostic values in- dependent of several clinical features in multivariate Cox hazards analysis. Notably, validation either based on an independent HNSCC cohort or by laboratory experiments confirmed these findings. Conclusions: Our transcriptomic analysis suggested that dysregulation of these HNSCC-associated IncRNAs might be involved in HNSCC oncogenesis and progression. Moreover, CYTOR and HCG22 were confirmed as two independent prognostic factors for HNSCC patient survival, providing new insights into the roles of these IncRNAs in HNSCC as well as clinical applications.
基金supported by the National Major Project of Research and Development of China,No.2017YFA0104701(to BY)the National Natural Science Foundation of China,No.32000725(to QQC)+1 种基金the Natural Science Foundation of Jiangsu Province of China,No.BK20200973(to QQC)the Jiangsu Provincial University Innovation Training Key Project of China,No.202010304021Z(to ML)。
文摘Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore,investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the molecular mechanisms and signal cascades underlying peripheral nerve repair and provide potential strategies for improving the low axon regeneration capacity of the central nervous system.In this study,we applied weighted gene co-expression network analysis to identify differentially expressed genes in proximal and distal sciatic nerve segments from rats with sciatic nerve injury.We identified 31 and 15 co-expression modules from the proximal and distal sciatic nerve segments,respectively.Functional enrichment analysis revealed that the differentially expressed genes in proximal modules promoted regeneration,while the differentially expressed genes in distal modules promoted neurodegeneration.Next,we constructed hub gene networks for selected modules and identified a key hub gene,Kif22,which was up-regulated in both nerve segments.In vitro experiments confirmed that Kif22 knockdown inhibited proliferation and migration of Schwann cells by modulating the activity of the extracellular signal-regulated kinase signaling pathway.Collectively,our findings provide a comparative framework of gene modules that are co-expressed in injured proximal and distal sciatic nerve segments,and identify Kif22 as a potential therapeutic target for promoting peripheral nerve injury repair via Schwann cell proliferation and migration.All animal experiments were approved by the Institutional Animal Ethics Committee of Nantong University,China(approval No.S20210322-008)on March 22,2021.
文摘Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict the prognosis of esophageal cancer. The matched microarray and RNA sequencing data of 185 patients with esophageal cancer were downloaded from The Cancer Genome Atlas(TCGA), and gene co-expression networks were built without distinguishing between squamous carcinoma and adenocarcinoma. The result showed that 12 modules were associated with one or more survival data such as recurrence status, recurrence time, vital status or vital time. Furthermore, survival analysis showed that 5 out of the 12 modules were related to progression-free survival(PFS) or overall survival(OS). As the most important module, the midnight blue module with 82 genes was related to PFS, apart from the patient age, tumor grade, primary treatment success, and duration of smoking and tumor histological type. Gene ontology enrichment analysis revealed that 'glycoprotein binding' was the top enriched function of midnight blue module genes. Additionally, the blue module was the exclusive gene clusters related to OS. Platelet activating factor receptor(PTAFR) and feline Gardner-Rasheed(FGR) were the top hub genes in both modeling datasets and the STRING protein interaction database. In conclusion, our study provides novel insights into the prognosis-associated genes and screens out candidate biomarkers for esophageal cancer.
基金supported by the National Natural Science Foundation of China,No.31700926the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘The neural regeneration process is driven by a wide range of molecules and pathways. Adherens junctions are critical cellular junctions for the integrity of peripheral nerves. However, few studies have systematically characterized the transcript changes in the adherens junction pathway following injury. In this study, a rat model of sciatic nerve crush injury was established by forceps. Deep sequencing data were analyzed using comprehensive transcriptome analysis at 0, 1, 4, 7, and 14 days after injury. Results showed that most individual molecules in the adherens junctions were either upregulated or downregulated after nerve injury. The m RNA expression of ARPC1 B, ARPC3, TUBA8, TUBA1 C, CTNNA2, ACTN3, MET, HGF, NME1 and ARF6, which are involved in the adherens junction pathway and in remodeling of adherens junctions, was analyzed using quantitative real-time polymerase chain reaction. Most of these genes were upregulated in the sciatic nerve stump following peripheral nerve injury, except for CTNNA2, which was downregulated. Our findings reveal the dynamic changes of key molecules in adherens junctions and in remodeling of adherens junctions. These key genes provide a reference for the selection of clinical therapeutic targets for peripheral nerve injury.
基金Fund supported by the National Natural Science Foundation of China(81460598 and 81660644)the Natural Science Foundation of Jiangsu Province(BK20170267)Guangxi Special Fund for the First-Class Discipline Construction Project(05019038).
文摘Objective Alzheimer's disease(AD)is the most common cause of dementia.The pathophysiology of the disease mostly remains unearthed,thereby challenging drug development for AD.This study aims to screen high throughput gene expression data using weighted co-expression network analysis(WGCNA)to explore the potential therapeutic targets.Methods The dataset of GSE36980 was obtained from the Gene Expression Omnibus(GEO)database.Normalization,quality control,filtration,and soft-threshold calculation were carried out before clustering the co-expressed genes into different modules.Furthermore,the correlation coefiidents between the modules and clinical traits were computed to identify the key modules.Gene ontology and pathway enrichment analyses were performed on the key module genes.The STRING database was used to construct the protein-protein interaction(PPI)networks,which were further analyzed by Cytoscape app(MCODE).Finally,validation of hub genes was conducted by external GEO datasets of GSE 1297 and GSE 28146.Results Co-expressed genes were clustered into 27 modules,among which 6 modules were identified as the key module relating to AD occurrence.These key modules are primarily involved in chemical synaptic transmission(G0:0007268),the tricarboxylic acid(TCA)cycle and respiratory electron transport(R-HSA-1428517).WDR47,OXCT1,C3orfl4,ATP6V1A,SLC25A14,NAPB were found as the hub genes and their expression were validated by external datasets.Conclusions Through modules co-expression network analyses and PPI network analyses,we identified the hub genes of AD,including WDR47,0XCT1,C3orfl4i ATP6V1A,SLC25A14 and NAPB.Among them,three hub genes(ATP6V1A,SLC25A14,OXCT1)might contribute to AD pathogenesis through pathway of TCA cycle.
基金supported in part by grants from the National Natural Science Foundation of China(No.81072152 and No.81770283)Natural Science Foundation of Hubei Province(No.2015CFA027)+3 种基金Research Foundation of Health and Family Planning Commission of Hubei Province(No.WJ2015MAO10 and No.WJ2017M249)Clinical Medical Research Center of Peritoneal Cancer of Wuhan(No.2015060911020462)Subsidy Project of No.1 Hospital of Lanzhou University(No.Idyyyn2018-13)Innovation fund of universities in Gansu Province(No.2020B-009).
文摘Objective:The present study was aimed to identify novel key genes,prognostic biomarkers and molecular pathways implicated in tumorigenesis of colon cancer.Methods:The microarray data GSE41328 containing 10 colon cancer samples and 10 adjacent normal tissues was analyzed to identify 4763 differentially expressed genes.Meanwhile,another microarray data GSE17536 was performed for weighted gene co-expression network analysis(WGCNA).Results:In present study,12 co-expressed gene modules associated with tumor progression were identified for further studies.The red module showed the highest association with pathological stage by Pearson's correlation analysis.Functional enrichment analysis revealed that genes in red module focused on cell division,cell proliferation,cell cycle and metabolic related pathway.Then,a total of 26 key hub genes were identified,and GEPIA database was subsequently selected for validation.Holliday junction-recognizing protein(HJURP)and cell division cycle 25 homolog C(CDC25C)were identified as effective prognosis biomarkers,which were all detrimental to prognosis.Gene set enrichment analyses(GSEA)found the two hub genes were enriched in“oocyte meiosis”,“oocyte maturation that are progesterone-mediated”,“p53 signaling pathway”,and“cell cycle”.Furthermore,the immunohistochemistry and western blotting showed that HJURP was highly expressed in colon cancer tissue.Conclusion:HJURP was identified as a key gene associated with colon cancer progression and prognosis by WGCNA,which might influence the prognosis by regulating cell cycle pathways.
基金This study was supported by the China Agriculture Research System of MOF and MARA(CARS-41)the Key-Area Research and Development Program of Guangdong Province,China(2020B020222002)+3 种基金the Foshan University High-level Talent Program,China(CGZ07243)the Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding,China(2019B030301010)the Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes,China(2019KSYS011)the Foshan Institute of Science and Technology Postgraduate Free Exploration Fund,China(2021ZYTS36).
文摘Linoleic acid is an essential polyunsaturated fatty acid that cannot be synthesized by humans or animals themselves and can only be obtained externally.The amount of linoleic acid present has an impact on the quality and flavour of meat and indirectly affects consumer preference.However,the molecular mechanisms influencing the deposition of linoleic acid in organisms are not clear.As the molecular mechanisms of linoleic acid deposition are not well understood,to investigate the main effector genes affecting the linoleic acid content,this study aimed to screen for hub genes in slow-type yellow-feathered chickens by transcriptome sequencing(RNA-Seq)and weighted gene coexpression network analysis(WGCNA).We screened for candidate genes associated with the linoleic acid content in slow-type yellow-feathered broilers.A total of 399 Tiannong partridge chickens were slaughtered at 126 days of age,fatty acid levels were measured in pectoral muscle,and pectoral muscle tissue was collected for transcriptome sequencing.Transcriptome sequencing results were combined with phenotypes for WGCNA to screen for candidate genes.KEGG enrichment analysis was also performed on the genes that were significantly enriched in the modules with the highest correlation.A total of 13310 genes were identified after quality control of transcriptomic data from 399 pectoral muscle tissues.WGCNA was performed,and a total of 26 modules were obtained,eight of which were highly correlated with the linoleic acid content.Four key genes,namely,MDH2,ATP5B,RPL7A and PDGFRA,were screened according to the criteria|GS|>0.2 and|MM|>0.8.The functional enrichment results showed that the genes within the target modules were mainly enriched in metabolic pathways.In this study,a large-sample-size transcriptome analysis revealed that metabolic pathways play an important role in the regulation of the linoleic acid content in Tiannong partridge chickens,and MDH2,ATP5B,RPL7A and PDGFRA were screened as important candidate genes affecting the linoleic acid content.The results of this study provide a theoretical basis for selecting molecular markers and comprehensively understanding the molecular mechanism affecting the linoleic acid content in muscle,providing an important reference for the breeding of slow-type yellowfeathered broiler chickens.
基金financially supported by the grant from the National Plant Transgenic Program(No.2013ZX08003-003)from Ministry of Agriculture of the People’s Republic of China
文摘Auxin plays important roles in various aspects of plant growth and development (Zhao, 2010). In Arabidopsis, a number of YUCCA (YUC) genes, which are involved in auxin biosyn- thesis, have been identified (Zhao et al., 2001; Woodward et al., 2005; Cheng et al., 2006, 2007; Kim et al., 2007; Chen et al., 2014). YUC genes encode flavin monooxygenases (FMOs) that convert indole-3-pyruvate (IPA) to indole-3-acetic acid (IAA) (Zhao, 2012). The Arabidopsis YUC family is comprised of 11 members (Zhao et al., 2001;
基金supported by the National Natural Science Foundation of China under Grants No.61720106004 and No.61872405the Key R&D Project of Sichuan Province,China under Grants No.20ZDYF2772 and No.2020YFS0243.
文摘Cardiomyopathies represent the most common clinical and genetic heterogeneous group of diseases that affect the heart function.Though progress has been made to elucidate the process,molecular mechanisms of different classes of cardiomyopathies remain elusive.This paper aims to describe the similarities and differences in molecular features of dilated cardiomyopathy(DCM)and ischemic cardiomyopathy(ICM).We firstly detected the co-expressed modules using the weighted gene co-expression network analysis(WGCNA).Significant modules associated with DCM/ICM were identified by the Pearson correlation coefficient(PCC)between the modules and the phenotype of DCM/ICM.The differentially expressed genes in the modules were selected to perform functional enrichment.The potential transcription factors(TFs)prediction was conducted for transcription regulation of hub genes.Apoptosis and cardiac conduction were perturbed in DCM and ICM,respectively.TFs demonstrated that the biomarkers and the transcription regulations in DCM and ICM were different,which helps make more accurate discrimination between them at molecular levels.In conclusion,comprehensive analyses of the molecular features may advance our understanding of DCM and ICM causes and progression.Thus,this understanding may promote the development of innovative diagnoses and treatments.