This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,suc...This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios.展开更多
土木工程行业在信息化转型中面临着大量的非结构化的文本信息,大语言模型(large language models,LLMs)由于其强大的自然语言处理能力,为行业领域的智能化变革提供了新的机遇。采用系统性文献回顾的方法,在梳理LLMs的技术架构及在垂直...土木工程行业在信息化转型中面临着大量的非结构化的文本信息,大语言模型(large language models,LLMs)由于其强大的自然语言处理能力,为行业领域的智能化变革提供了新的机遇。采用系统性文献回顾的方法,在梳理LLMs的技术架构及在垂直领域研究现状的基础上,提出了LLMs在土木工程领域的四大应用场景及技术路线、面临的挑战及研究趋势。研究发现,LLMs已在土木工程领域有探索性的研究与应用,目前主要集中在内容生成类、智能问答类、文本摘要类及分析推理类四大应用场景,覆盖土木工程项目全生命周期阶段,并具有跨学科、跨模态融合的特性。然而,LLMs的应用仍面临知识专业性低、信息时效性差、数据质量及交互性低等挑战。基于此,提出了一系列未来研究机遇,在模型优化方面,利用参数高效微调技术注入专业知识,增强LLMs在土木工程领域应用的广度和深度;与知识图谱结合,提升LLMs在回答中的精准性、可解释性与时效性;融合多模态的数据类型,扩展LLMs在土木工程领域的应用场景;开发适用的模型评估方法,量化LLMs在土木工程领域应用的价值及性能表现。在应用场景方面,结合LLMs和土木工程领域特点,可以拓展LLMs在文档生成、问答系统、信息抽取、合规性审查等复杂任务中的应用,提高从业者与数据间的交互效率。研究旨在为学术界和企业界进一步将LLMs应用于土木工程领域提供借鉴与参考。展开更多
本文研究了2000年至2007年自动化对美国劳动市场的影响,特别是考察了更完善的社会保障计划是否能够减轻自动化带来的负面影响。参考Acemoglu et al.(2020)的研究,本研究发现机器人采用率较高的地区减少了就业和工资,尤其是对没有大学学...本文研究了2000年至2007年自动化对美国劳动市场的影响,特别是考察了更完善的社会保障计划是否能够减轻自动化带来的负面影响。参考Acemoglu et al.(2020)的研究,本研究发现机器人采用率较高的地区减少了就业和工资,尤其是对没有大学学位的工人影响更大。值得注意的是,本文利用各州社会保障程度的差异,发现拥有更完善的失业保险的地区减轻了自动化对工资的负面影响。结果表明,失业保险使被取代的工人能够得到更好的就业匹配。这些发现强调了强大的社会保障政策在应对自动化带来的挑战中的重要性,为政策制定者提供了宝贵的借鉴。展开更多
文摘This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios.
文摘土木工程行业在信息化转型中面临着大量的非结构化的文本信息,大语言模型(large language models,LLMs)由于其强大的自然语言处理能力,为行业领域的智能化变革提供了新的机遇。采用系统性文献回顾的方法,在梳理LLMs的技术架构及在垂直领域研究现状的基础上,提出了LLMs在土木工程领域的四大应用场景及技术路线、面临的挑战及研究趋势。研究发现,LLMs已在土木工程领域有探索性的研究与应用,目前主要集中在内容生成类、智能问答类、文本摘要类及分析推理类四大应用场景,覆盖土木工程项目全生命周期阶段,并具有跨学科、跨模态融合的特性。然而,LLMs的应用仍面临知识专业性低、信息时效性差、数据质量及交互性低等挑战。基于此,提出了一系列未来研究机遇,在模型优化方面,利用参数高效微调技术注入专业知识,增强LLMs在土木工程领域应用的广度和深度;与知识图谱结合,提升LLMs在回答中的精准性、可解释性与时效性;融合多模态的数据类型,扩展LLMs在土木工程领域的应用场景;开发适用的模型评估方法,量化LLMs在土木工程领域应用的价值及性能表现。在应用场景方面,结合LLMs和土木工程领域特点,可以拓展LLMs在文档生成、问答系统、信息抽取、合规性审查等复杂任务中的应用,提高从业者与数据间的交互效率。研究旨在为学术界和企业界进一步将LLMs应用于土木工程领域提供借鉴与参考。
文摘本文研究了2000年至2007年自动化对美国劳动市场的影响,特别是考察了更完善的社会保障计划是否能够减轻自动化带来的负面影响。参考Acemoglu et al.(2020)的研究,本研究发现机器人采用率较高的地区减少了就业和工资,尤其是对没有大学学位的工人影响更大。值得注意的是,本文利用各州社会保障程度的差异,发现拥有更完善的失业保险的地区减轻了自动化对工资的负面影响。结果表明,失业保险使被取代的工人能够得到更好的就业匹配。这些发现强调了强大的社会保障政策在应对自动化带来的挑战中的重要性,为政策制定者提供了宝贵的借鉴。