期刊文献+
共找到33,151篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
1
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
Electromechanical coupling vibration characteristics of high-speed train transmission system considering gear eccentricity and running resistance 被引量:1
2
作者 Yeping Yuan Junguo Wang 《Acta Mechanica Sinica》 2025年第5期219-241,共23页
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run... The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states. 展开更多
关键词 gear eccentricity Electromechanical coupling Running resistance System stability Vibration characteristics
原文传递
A new multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth 被引量:1
3
作者 Xinghui HAN Yanhui WANG +3 位作者 Lin HUA Wuhao ZHUANG Fangyan ZHENG Wei FENG 《Chinese Journal of Aeronautics》 2025年第1期568-585,共18页
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ... Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods. 展开更多
关键词 Multi-DOF envelope forming Spiral bevel gear Back taper tooth Metal flow Process design
原文传递
Simulation and Experiment of Windage Power Loss of A Shrouded Spiral Bevel Gears under Oil Injection Lubrication 被引量:1
4
作者 Bo Li Kai Rong +4 位作者 Xuyang Zhang Sanmin Wang U-Xuan Tan Xuanyuan Su Laifa Tao 《Chinese Journal of Mechanical Engineering》 2025年第2期407-426,共20页
During high-speed rotation,the surface of aeronautic spiral bevel gears will generate significant pressure and viscous forces,which will cause a certain amount of windage power loss and reduce the efficiency of the tr... During high-speed rotation,the surface of aeronautic spiral bevel gears will generate significant pressure and viscous forces,which will cause a certain amount of windage power loss and reduce the efficiency of the transmission system.Based on the computational fluid dynamics,this paper analyzes the windage power loss of a single spiral bevel gear and a spiral bevel gear pair under oil injection lubrication.In addition,the shroud is used to suppress gear windage loss,and the clearance size and opening angle of the designed shroud are optimized.Finally,by comparing and analyzing the experimental results,the following conclusions were obtained:(1)For a single gear,the speed is the most important factor affecting windage loss,followed by the hand of spiral,and rotation direction;(2)For gear pairs,under oil injection lubrication,the input speed has the greatest impact on windage power loss,followed by the influence of oil injection port speed,temperature and oil injection port pressure;(3)Installing a shroud is an effective method to reduce windage power loss;(4)In the pure air phase,the smaller the clearance between the shroud and the gear surface,and the smaller the radial direction between the shroud and the shaft,the better the effect of reducing windage;(5)In the two-phase flow of oil and gas,it is necessary to design oil drainage holes on the shroud to ensure the smooth discharge of lubricating oil and improve the drag reduction effect. 展开更多
关键词 Computational fluid dynamics(CFD) Windage power loss Spiral bevel gear SHROUD Oil injection lubrication
在线阅读 下载PDF
Optimization of mesh characteristics of gear pair considering influence of assembly errors
5
作者 ZHAO Xiao-jian MA Hui +5 位作者 MA Ze-yu LIU Jia-qi CAO Peng WU Yu-ping DING Xiang-fu ZHAO Tian-yu 《Journal of Central South University》 2025年第4期1400-1430,共31页
Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional load... Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional loaded tooth contact analysis(3D-LTCA)method which can consider tooth modification and coupling assembly errors is proposed,and mesh stiffness calculated by proposed method is verified by MASTA software.Secondly,based on neural network,the surrogate model(SM)that maps the relationship between modification parameters and mesh mechanical parameters is established,and its accuracy is verified.Finally,SM is introduced to establish an optimization model with the target of minimizing mesh stiffness variations and obtaining more even load distribution on mesh surface.The results show that even considering training time,the efficiency of gear pair optimization by surrogate model is still much higher than that by LTCA method.After optimization,the mesh stiffness fluctuation of gear pair with coupling assembly error is reduced by 34.10%,and difference in average contact stresses between left and right regions of the mesh surface is reduced by 62.84%. 展开更多
关键词 helical gear mesh characteristics gear tooth modification assembly errors neural network multi-objective optimization
在线阅读 下载PDF
Wear Performance and Wear Monitoring of Nylon Gears Made Using Conventional and Additive Manufacturing Techniques
6
作者 Wenhan Li Aida Annisa Amin Daman +4 位作者 Wade Smith Huaiyu Zhu Shirley Cui Pietro Borghesani Zhongxiao Peng 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期101-110,共10页
Polymer gears are increasingly replacing metal gears in applications with low to medium torque.Traditionally,polymer gears have been manufactured using injection molding,but additive manufacturing(AM)is becoming incre... Polymer gears are increasingly replacing metal gears in applications with low to medium torque.Traditionally,polymer gears have been manufactured using injection molding,but additive manufacturing(AM)is becoming increasingly common.Among the different types of polymer gears,nylon gears are particularly popular.However,there is currently very limited understanding of the wear resistance of nylon gears and of the impact of the manufacturing method on gear wear performance.The aims of this work are(a)to study the wear process of nylon gears made using the conventional injection molding method and two popularly used AM methods,namely,fused deposition modeling and selective laser sintering,(b)to compare and understand the wear performance by monitoring the evolution of the gear surfaces of the teeth,and(c)to study the effect of wear on the gear dynamics by analyzing gearbox vibration signals.This article presents experimental work,data analysis of the wear processes using molding and image analysis techniques,as well as the vibration data collected during gear wear tests.It also provides key results and further insights into the wear performance of the tested nylon gears.The information gained in this study is useful for better understanding the degradation process of additively manufactured nylon gears. 展开更多
关键词 condition monitoring gear surface evolution VIBRATION wear of nylon gears
在线阅读 下载PDF
Loaded tooth contact analysis and meshing stiffness calculation for cracked spiral bevel gears
7
作者 Zhen LIU Fucai LI +2 位作者 Wenjie BAO Xiaolei XU Freeda A.AMIR 《Chinese Journal of Aeronautics》 2025年第3期593-623,共31页
Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior ... Tooth cracks may occur in spiral bevel gear transmission system of the aerospace equipment.In this study,an accurate and efficient loaded tooth contact analysis(LTCA)model is developed to predict the contact behavior and time-varying meshing stiffness(TVMS)of spiral bevel gear pair with cracked tooth.The tooth is sliced,and the contact points on slices are computed using roll angle surfaces.Considering the geometric complexity of crack surface,a set of procedures is formulated to generate spatial crack and determine crack parameters for contact points.According to the positional relationship between contact point and crack path,each sliced tooth is modeled as a non-uniform cantilever beam with varying reduced effective load-bearing tooth thickness.Then the compliance model of the cracked tooth is established to perform contact analysis,along with TVMS calculations utilizing three different models.By employing spiral bevel gear pairs with distinct types of cracks as examples,the accuracy and efficiency of the developed approach are validated via comparative analyses with finite element analysis(FEA)outcomes.Furthermore,the investigation on effects of cracks shows that tooth cracks can induce alterations in meshing performance of both entire gear pair and individual tooth pairs,including not only cracked tooth pair but also adjacent non-cracked tooth pairs.Hence,the proposed model can serve as a useful tool for analyzing the variations in contact behavior and meshing stiffness of spiral bevel gears due to different cracks. 展开更多
关键词 Bevel gears gear teeth Cracks Loaded tooth contact analysis Time-varying meshing stiffness Tooth compliance
原文传递
Optimization Design and Numerical Evaluation of Waterjet Steering and Reversing Gear
8
作者 GONG Jie WU Zhong-wan +2 位作者 SUN Yi-dan DING Jiang-ming SU Jun-jun 《China Ocean Engineering》 2025年第2期268-279,共12页
This study aims to enhance the maneuvering advantages of the waterjet unit through parametric design,performance evaluation,and optimization of the one-piece waterjet propulsion steering and reversing gear(SRG).The SR... This study aims to enhance the maneuvering advantages of the waterjet unit through parametric design,performance evaluation,and optimization of the one-piece waterjet propulsion steering and reversing gear(SRG).The SRG’s performance evaluation stems mainly from the effect of the free surface,the varying sailing speeds of the ship,and its performance while functioning at the stern of the waterjet-propelled vessel.Parameters such as the length,width,and height of the steering gear,as well as the inclination,width,and curvature of the reversing gear,significantly influence the SRG.Although the free surface has a great impact on the force of the SRG,its performance trend remains unaffected.When the SRG operates at the stern of the ship,the optimized scheme’s lateral force improves by an average of 8.08%for sailing with a rudder angle condition and an average of 45.69%for reversing sailing with a rudder angle condition.The longitudinal force of the optimized scheme improves by more than 23%when sailing without a rudder angle condition and by an average of 31.75%when sailing with a reversed rudder angle condition.Additionally,the speed of the rotor has a minimal effect on the lateral force and a significant effect on the longitudinal force. 展开更多
关键词 waterjet steering and reversing gear HYDRODYNAMICS OPTIMIZATION
在线阅读 下载PDF
Elastohydrodynamic Lubrication Performance of Curvilinear Cylindrical Gears Based on Finite Element Method
9
作者 Xuegang Zhang Yingjie Dong +2 位作者 Xian Wei Ruiqi Wang Qi Zhang 《Computer Modeling in Engineering & Sciences》 2025年第2期1585-1609,共25页
The fixed-setting face-milled curvilinear cylindrical gear features teeth that are arc-shaped along the longitudinal direction.Some researchers hypothesize that this arc-tooth may enhance the lubrication conditions of... The fixed-setting face-milled curvilinear cylindrical gear features teeth that are arc-shaped along the longitudinal direction.Some researchers hypothesize that this arc-tooth may enhance the lubrication conditions of the gear.This study focuses on this type of gear,employing both finite element analysis(FEA)and analytical methods to determine the input parameters required for elastohydrodynamic lubrication(EHL)analysis.The effects of assembly errors,tooth surface modifications,load,and face-milling cutter radius on the lubrication performance of these gears are systematically investigated.The finite element model(FEM)of the gear pair is utilized to calculate the coordinates of contact points on the tooth surface and the corresponding contact pressures at the tooth surface nodes throughout a meshing cycle.Subsequently,the normal load on specific gear teeth is determined using a gradient-based approach.Entrainment speed,slip-to-roll ratio,and effective radius near the contact points on the tooth surface are derived through analytical methods.The data obtained from FEA serve as input parameters for EHL simulations.The lubrication performance of the curvilinear cylindrical gear is evaluated through example studies.The findings indicate that using FEA to provide input parameters for EHL simulations can reveal the occurrence of edge contact phenomena during gear meshing,allowing for a more accurate representation of the gear’s lubrication conditions.The lubrication performance of the curvilinear cylindrical gear is shown to be independent of the face-milling cutter radius but is significantly influenced by the size of the contact pattern on the tooth surface.Curvilinear gears with larger contact patterns demonstrate superior lubrication performance. 展开更多
关键词 FEM EHL curvilinear cylindrical gear lubrication performance analysis
在线阅读 下载PDF
Continuously adjustable mechanical metamaterial based on planetary gear trains and external meshing gears
10
作者 Shuai MO Xu TANG +2 位作者 Keren CHEN H.HOUJOH Wei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期233-252,共20页
The metamaterial based on external meshing gears(MEG)is designed based on the principle of external meshing gear transmission.Based on the meshing transmission principle of external meshing gears and planetary gear tr... The metamaterial based on external meshing gears(MEG)is designed based on the principle of external meshing gear transmission.Based on the meshing transmission principle of external meshing gears and planetary gear trains,the internal and external gear rings are designed.Based on the internal and external gear rings,the metamaterial based on inner and outer planetary gear trains(MIP)is designed to study the shear modulus,Young's modulus,and amplitude-frequency characteristics of the metamaterial based on gears at different angles.The effects of the number of planetary gears on the physical characteristics of the MIP are studied.The results show that the MEG can be continuously adjusted by adjusting the shear modulus and Young's modulus due to its meshing characteristics.With the same number of gears,the adjustment range of the MIP is larger than the adjustment range of the MEG.When the number of planetary gears increases,the adjustment range of the MIP decreases.Moreover,when the metamaterial based on gears rotates,the harmonic response changes with the change of the angle. 展开更多
关键词 METAMATERIAL ADJUSTABLE EXTERNAL inner and outer planetary gear train
在线阅读 下载PDF
Controlling segregation and hardenability of gear steel based on as-cast structure
11
作者 Hai-jie Wang Ze Zhang +4 位作者 Peng Lan Gang Chen Pu Wang Chuan-hui Jiang Jia-quan Zhang 《Journal of Iron and Steel Research International》 2025年第1期144-158,共15页
Hardenability significantly impacts the distortion of gear during heat treatment,correlated to the uniformity of solute distribution in steel matrix.The experimental analysis was conducted on the macrostructure,solute... Hardenability significantly impacts the distortion of gear during heat treatment,correlated to the uniformity of solute distribution in steel matrix.The experimental analysis was conducted on the macrostructure,solute distribution,dendrite structure,and rod hardenability of 20CrMnTiH gear steel in continuously cast blooms and hot roller rods.The evaluation approach by the standards for the hardenability of gear steel rods and the corresponding blooms was analyzed,and the inheritance mechanism from solidification segregation to hardenability fluctuation of gear steel was revealed.The results indicate that semi-macroscopic spot segregation located in the equiaxed zone exhibits larger size,higher solute enrichment,and worse solute homogeneity,leading to significant solute fluctuations in the blooms and hardenability fluctuation in the rods.By increasing the liquid steel superheat from 35 to 40℃,reducing the mold electromagnetic stirring from 300 to 100 A,and implementing the soft reduction(SR)of 7 mm at the solidification end,the equiaxed ratio of the strand decreased from 26.42%to 6.69%.Consequently,the solute fluctuation range and standard deviation decrease significantly in the transverse section,while the maximum segregation ratio,average fluctuation range,and average standard deviation of solutes C,Cr,and Mn in the spot segregation decrease at the same time.At the meanwhile,the equiaxed ratio of the rod decreased from 24.89%to 4.09%,and the structure of the hardenability detection zone was transformed from equiaxed crystals to columnar crystals.Furthermore,the solute fluctuation range and standard deviation in the transverse section decreased,while the homogeneity in spot segregation was also improved.The hardness difference of A and B surfaces at J9 and J15 positions was smaller than 2 HRC,meeting the qualification standard for hardenability. 展开更多
关键词 gear steel Continuous casting Solute distribution Dendritic structure HARDENABILITY
原文传递
Development of a Digital Model of a Gear Rotor System for Fault Diagnosis Using the Finite Element Method and Machine Learning
12
作者 Anubhav Srivastava Rajiv Tiwari 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期121-136,共16页
Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear t... Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations. 展开更多
关键词 digital model finite element modeling gear profile errors geared-rotor system machine learning
在线阅读 下载PDF
Sundoli:A necro(w)bot with multi-stiffness joints built using geared mechanical metastructures
13
作者 Hyeon Lee Jonah Mack Parvez Alam 《Advanced Bionics》 2025年第2期83-91,共9页
In this communication,we design and analyse Sundoli,a necrobot(a bionically engineered robot using decreased animal parts).Sundoli is manufactured using a crow endoskeleton,supported and rearticulated by a geared mech... In this communication,we design and analyse Sundoli,a necrobot(a bionically engineered robot using decreased animal parts).Sundoli is manufactured using a crow endoskeleton,supported and rearticulated by a geared mechanical metastructure to enable controllable passive deformation.The metastructures and bone braces are designed to affix the femur bone to the tibiotarsus,whilst still permitting kinematic movement between the tibiotarsus and the tarsometatarsus of the crow skeleton.The rearticulated hips function as a fulcrum between the upper and lower body parts,whilst concurrently enabling sagittal rotation of the crow skeleton about the hips.Static compression tests,finite element analyses,and in-situ tests conducted using Sundoli show that the deformation behaviours of metastructures with and without supports are acutely sensitive to the angle of the tarsometatarsus relative to both the ground and the loading direction,highlighting the importance of designing the metastructure holistically and with consideration of the entire skeletal structure.At different loads and angles,the metastructures exhibit variable stiffnesses over their full deformational ranges,demonstrating their effectiveness in protecting the brittle biological bones.Using a metastructure as a mechanism for passive joint rearticulation enables Sundoli to support a payload 8.7 times its body weight without lateral support(an 870%payload ratio)and 14 times its body weight with lateral support(a 1400%payload ratio).This payload capacity is achievable throughout the full range of its upper body movement in the sagittal plane. 展开更多
关键词 Necrobot Necro-robot Mechanical metamaterial Mechanical metastructure geared metastructure Discontinuous metastructure
在线阅读 下载PDF
3D Printed Gear-Based Quasi-Zero Stiffness Vibration Isolation Metastructure
14
作者 Gexin Wang Jianyang Li +5 位作者 Yan Liu Kunyan Wang Luquan Ren Qingping Liu Lei Ren Bingqian Li 《Journal of Bionic Engineering》 2025年第2期767-782,共16页
Traditional linear vibration isolators struggle to combine high load-bearing capacity with low-frequency vibration isolation, whereas nonlinear metastructure isolators can effectively fulfill both functions. This pape... Traditional linear vibration isolators struggle to combine high load-bearing capacity with low-frequency vibration isolation, whereas nonlinear metastructure isolators can effectively fulfill both functions. This paper draws inspiration from the Quasi-Zero Stiffness (QZS) characteristics resulting from the buckling deformation of beams, and proposes a gear-based QZS structure by arranging beams in a circular array. We investigated the static mechanical behavior under different structural parameters, loading angles, and gear combinations through experiments and simulations, and demonstrated the mechanical performances could be effectively programmed. Subsequent vibration isolation tests on the double gears prove superior vibration isolation performance at low frequency while maintaining high load-bearing capacities. Additionally, a key contribution of our work is the development of a mathematical model to characterize the buckling behavior of the unit beam within the gear structure, with its accuracy validated through finite element analysis and experimental results. The gear’s modulus, number of teeth, and pressure angle are selected according to standard series, allowing the gear can be seamlessly integrated into existing mechanical systems in critical fields such as aerospace, military, and etc. 展开更多
关键词 3D Printing Vibration Isolation Quasi-zero stiffness gear Metastructure
在线阅读 下载PDF
Gear flank modification and precision control based on electronic gearbox
15
作者 TIAN Xiao-qing LU Yi-guo +5 位作者 YOU Tong-fei TANG Jian-ping RUI Xiao-yu LI Guang-hui XIA Lian HAN Jiang 《Journal of Central South University》 2025年第2期509-522,共14页
Gear flank modification is essential to reduce the noise generated in the gear meshing process,improve the gear transmission performance,and reduce the meshing impact.Aiming at the problem of solving the additional mo... Gear flank modification is essential to reduce the noise generated in the gear meshing process,improve the gear transmission performance,and reduce the meshing impact.Aiming at the problem of solving the additional motions of each axis in the higher-order topology modification technique and how to accurately add the different movements expressed in the form of higher-order polynomials to the corresponding motion axes of the machine tool,a flexible higher-order gear topology modification technique based on an electronic gearbox is proposed.Firstly,a two-parameter topology gear surface equation and a grinding model of wheel grinding gears are established,and the axial feed and tangential feed are expressed in a fifth-order polynomial formula.Secondly,the polynomial coefficients are solved according to the characteristics of the point contact when grinding gears.Finally,an improved electronic gearbox model is constructed by combining the polynomial interpolation function to achieve gear topology modification.The validity and feasibility of the modification method based on the electronic gearbox are verified by experimental examples,which is of great significance for the machining of modification gears based on the continuous generative grinding method of the worm grinding wheel. 展开更多
关键词 gear grinding topological modification polynomial interpolation electronic gearbox grinding model
在线阅读 下载PDF
基于GEAR式翻转课堂的微课教学在肾内科见习中的应用
16
作者 马续祥 王菡 +2 位作者 黄玉萍 王道洋 李子广 《中国继续医学教育》 2025年第3期106-109,共4页
目的探讨基于团体努力的应用研究(group effort applied research,GEAR)式翻转课堂的微课教学在肾内科见习教学中的效果。方法选取2022年7月—2023年6月轮转进入蚌埠医科大学第二附属医院肾脏内科及血透中心的90名本科见习生,按照随机... 目的探讨基于团体努力的应用研究(group effort applied research,GEAR)式翻转课堂的微课教学在肾内科见习教学中的效果。方法选取2022年7月—2023年6月轮转进入蚌埠医科大学第二附属医院肾脏内科及血透中心的90名本科见习生,按照随机数字表法分为对照组(n=40)和试验组(n=50),对照组采用常规教学模式,试验组采用基于GEAR式翻转课堂的微课教学。观察比较2组本科见习生理论考核、实操考核成绩,比较2组见习生对理论提升、技能提升、协作能力提升、学习兴趣提升的评价以及教师对本科见习生评分的差异。结果试验组的理论成绩和实操考核成绩及总分分别为(79.60±6.52)分、(84.70±4.00)分和(82.15±4.25)分,均高于对照组[(76.03±6.86)分、(74.78±5.04)分、(75.40±4.58)分],差异有统计学意义(P<0.05)。试验组见习生在学生理论提升、技能提升、协作能力提升、学习兴趣提升的问卷评分以及教师对见习生的评分均高于对照组,差异有统计学意义(P<0.001)。结论基于GEAR式翻转课堂的微课教学在肾内科见习教学有助于见习生的理论、技能、协作能力、学习兴趣多方面提升。 展开更多
关键词 gear 翻转课堂 微课 肾内科 见习教学 协作能力
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
17
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Bio-inspired Design Approach and Experimental Validation of a Holistic Lightweight Gear
18
作者 Nils Niebuhr Philipp Thomaneck +3 位作者 Lars Friedrichs Marc Pillarz Axel von Freyberg Andreas Fischer 《Journal of Bionic Engineering》 2025年第3期1304-1321,共18页
Lightweight structures for gears enable a reduction in material usage while maintaining the technical function of the gear.Previous approaches have pursued the strategy of lightweight structures in the gear wheel body... Lightweight structures for gears enable a reduction in material usage while maintaining the technical function of the gear.Previous approaches have pursued the strategy of lightweight structures in the gear wheel body.By taking inspiration from biological models and utilizing material savings in the gear rim,new design approaches for the lightweight design of gears can be realized.For this reason,a holistic biological design approach for spur gears is presented.In addition to the method of topology optimization,a biologically inspired approach based on diatoms is introduced,which achieves a weight reduction of over 50%compared to conventional solid gears.Diatom structures are extracted from the oceans,digitally modelled,and adapted to the load conditions of a reference gear by parametric design and simulation optimization.For the experimental validation of the design,a manufactured gear is statically loaded in the nominal load range and analyzed using a tactile geometry gear measurement.The measurement results of selected standard gear parameters show that the gear does not exhibit any plastic deformation for the nominal load capacity of 383 Nm,validating the presented design approach. 展开更多
关键词 Bionic engineering Lightweight gear technology Material saving Static load validation
在线阅读 下载PDF
Mechanism of Multi-Source Excitation for Whistling Sound of Gear Teeth in Automotive Electric Drive System
19
作者 Shuai Yuan Zhen Lin Wenfu Sun 《Journal of Electronic Research and Application》 2025年第4期65-70,共6页
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz... This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers. 展开更多
关键词 Automotive electric drive system Whistle of gear teeth Multi-source excitation mechanism
在线阅读 下载PDF
Effect of Tooth Geometry on Multi-cycle Meshing Temperature of POM Worm Gears:Parametric Study via an Adaptive Iteration Algorithm
20
作者 Kaixing Li Wujiao Xu +1 位作者 Yonggang Liu Datong Qin 《Chinese Journal of Mechanical Engineering》 2025年第2期427-439,共13页
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle... Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry. 展开更多
关键词 POM worm gears Multi-cycle meshing temperature Adaptive iteration algorithm Tooth geometry parameters Parametric study
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部