The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer ...The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer (IPL).The electrical properties (such as capacitance-voltage (C-V) and gate leakage current density versus gate voltage (J_(g)-V_(g))) were measured by HP4284A precision LCR meter and HP4156A semiconductor parameter analyzer.The chemical states and interfacial quality of the high-k/Ge interface were investigated by X-ray photoelectron spectroscopy (XPS).The experimental results show that the sample with the NdAlON as IPL exhibits the excellent interfacial and electrical properties.These should be attributed to an effective suppression of the Ge suboxide and HfGeOx interlayer,and an enhanced blocking role against inter-diffusion of the elements during annealing by the NdAlON IPL.展开更多
High-quality dielectric/Ge interface and low gate leakage current are crucial issues for high-performance nanoscaled Ge-based complementary metal–oxide–semiconductor(CMOS) device. In this paper, the interfacial and ...High-quality dielectric/Ge interface and low gate leakage current are crucial issues for high-performance nanoscaled Ge-based complementary metal–oxide–semiconductor(CMOS) device. In this paper, the interfacial and electrical properties of high-k Hf Gd ON/La Ta ON stacked gate dielectric Ge metal–oxide–semiconductor(MOS) capacitors with different gadolinium(Gd) contents are investigated. Experimental results show that when the controlling Gd content is a suitable value(e.g., 13.16%), excellent device performances can be achieved: low interface-state density(6.93 × 10^11 cm^-2·e V-1), small flatband voltage(0.25 V), good capacitance–voltage behavior, small frequency dispersion, and low gate leakage current(2.29× 10^-6 A/cm^2 at Vg = Vfb + 1 V). These could be attributed to the repair of oxygen vacancies, the increase of conduction band offset, and the suppression of germanate and suboxide Ge Ox at/near the high k/Ge interface by doping suitable Gd into Hf ON.展开更多
The interracial and electrical characteristics of Ge metal-oxide-semiconductor (MOS) devices with a dual passivation layer of ZrON/GeON formed by NH3- or N2-plasma treatment are investigated. The experimental result...The interracial and electrical characteristics of Ge metal-oxide-semiconductor (MOS) devices with a dual passivation layer of ZrON/GeON formed by NH3- or N2-plasma treatment are investigated. The experimental results show that the NH3-plasma treated sample exhibits significantly improved interfacial and electrical properties as compared to the samples with N2-plasma treatment and no treatment: a lower interface-state density at the midgap (1.64 × 1011 cm-2, eV- 1) and gate leakage current (9.32 × 10-5 A/cm2 at Vfb + 1 V), a small capacitance equivalent thickness (1.11nm) and a high k value (32). X-ray photoelectron spectroscopy is used to analyze the involved mechanisms. It is indicated that more GeON and less GeOx (x 〈 2) are formed on the Ge surface during NH3-plasma treatment than the NE-plasma treatment, resulting in a high-quality high-k/Ge interface, because H atoms and NH radicals in NHa-plasma can enhance volatilization of the unstable low-k GeOx, creating high-quality GeON passivation layer. Moreover, more nitrogen incorporation in ZrON/GeON induced by NHa-plasma treatment can build a stronger N barrier and thus more effectively inhibit in-diffusion of O and Ti from high-k gate dielectric and out-diffusion of Ge.展开更多
The effects of different NH3-plasma treatment procedures on interracial and electrical properties of Ge MOS capacitors with stacked gate dielectric of HtTiON/TaON were investigated. The NH3-plasma treatment was perfor...The effects of different NH3-plasma treatment procedures on interracial and electrical properties of Ge MOS capacitors with stacked gate dielectric of HtTiON/TaON were investigated. The NH3-plasma treatment was performed at different steps during fabrication of the stacked gate dielectric, i.e. before or after interlayer (TaON) deposition, or after deposition ofhigh-k dielectric (HfriON). It was found that the excellent interface quality with an interface-state density of 4.79 × 101l eV-lcm-2 and low gate leakage current (3.43 ×10-5 A/cm2 at Vg = 1 V) could be achieved for the sample with NH3-plasma treatment directly on the Ge surface before TaON deposition. The involved mechanisms are attributed to the fact that the NH3-plasma can directly react with the Ge surface to form more Ge-N bonds, i.e. more GeOxNy, which effectively blocks the inter-diffusion of elements and suppresses the formation of unstable GeOx interfacial layer, and also passivates oxygen vacancies and dangling bonds near/at the interface due to more N incorporation and decomposed H atoms from the NH3-plasma.展开更多
MOS capacitors with hafnium oxynitride(HfON)gate dielectrics were fabricated on Ge and Si substrates using the RF reactive magnetron sputtering method.A large amount of fixed charges and interface traps exist at the...MOS capacitors with hafnium oxynitride(HfON)gate dielectrics were fabricated on Ge and Si substrates using the RF reactive magnetron sputtering method.A large amount of fixed charges and interface traps exist at the Ge/HfON interface.HRTEM and XPS analyses show that Ge oxides were grown and diffused into HfON after post metal annealing.A Si nitride interfacial layer was inserted between Ge and HfON as diffusion barrier.Using this method,well behaved capacitance–voltage and current–voltage characteristics were obtained.Finally hystereses are compared under different process conditions and possible causes are discussed.展开更多
LaON,LaTiO and LaTiON films are deposited as gate dielectrics by incorporating N or/and Ti into La_2O_3 using the sputtering method to fabricate Ge MOS capacitors,and the electrical properties of the devices are caref...LaON,LaTiO and LaTiON films are deposited as gate dielectrics by incorporating N or/and Ti into La_2O_3 using the sputtering method to fabricate Ge MOS capacitors,and the electrical properties of the devices are carefully examined.LaON/Ge capacitors exhibit the best interface quality,gate leakage property and device reliability,but a smaller k value(14.9).LaTiO/Ge capacitors exhibit a higher k value(22.7),but a deteriorated interface quality,gate leakage property and device reliability.LaTiON/Ge capacitors exhibit the highest k value(24.6),and a relatively better interface quality(3.1×10^(11) eV^(-1)cm^(-2)),gate leakage property(3.6 × 10^(-3) A/cm^2 at V_g = 1V+V_(fb)) and device reliability.Therefore,LaTiON is more suitable for high performance Ge MOS devices as a gate dielectric than LaON and LaTiO materials.展开更多
基金Funded by the National Natural Science Foundation of China (No. 61704113)the Higher Vocational Brand Mayer in Guangdong Province (No.610103)the Educational Science Planning Project of Guangdong Province (Higher Education Special)。
文摘The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer (IPL).The electrical properties (such as capacitance-voltage (C-V) and gate leakage current density versus gate voltage (J_(g)-V_(g))) were measured by HP4284A precision LCR meter and HP4156A semiconductor parameter analyzer.The chemical states and interfacial quality of the high-k/Ge interface were investigated by X-ray photoelectron spectroscopy (XPS).The experimental results show that the sample with the NdAlON as IPL exhibits the excellent interfacial and electrical properties.These should be attributed to an effective suppression of the Ge suboxide and HfGeOx interlayer,and an enhanced blocking role against inter-diffusion of the elements during annealing by the NdAlON IPL.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200500)the National Natural Science Foundation of China(Grant Nos.61851406 and 61274112)
文摘High-quality dielectric/Ge interface and low gate leakage current are crucial issues for high-performance nanoscaled Ge-based complementary metal–oxide–semiconductor(CMOS) device. In this paper, the interfacial and electrical properties of high-k Hf Gd ON/La Ta ON stacked gate dielectric Ge metal–oxide–semiconductor(MOS) capacitors with different gadolinium(Gd) contents are investigated. Experimental results show that when the controlling Gd content is a suitable value(e.g., 13.16%), excellent device performances can be achieved: low interface-state density(6.93 × 10^11 cm^-2·e V-1), small flatband voltage(0.25 V), good capacitance–voltage behavior, small frequency dispersion, and low gate leakage current(2.29× 10^-6 A/cm^2 at Vg = Vfb + 1 V). These could be attributed to the repair of oxygen vacancies, the increase of conduction band offset, and the suppression of germanate and suboxide Ge Ox at/near the high k/Ge interface by doping suitable Gd into Hf ON.
基金Project supported by the National Natural Science Foundation of China(Nos.6127411261176100,61404055)
文摘The interracial and electrical characteristics of Ge metal-oxide-semiconductor (MOS) devices with a dual passivation layer of ZrON/GeON formed by NH3- or N2-plasma treatment are investigated. The experimental results show that the NH3-plasma treated sample exhibits significantly improved interfacial and electrical properties as compared to the samples with N2-plasma treatment and no treatment: a lower interface-state density at the midgap (1.64 × 1011 cm-2, eV- 1) and gate leakage current (9.32 × 10-5 A/cm2 at Vfb + 1 V), a small capacitance equivalent thickness (1.11nm) and a high k value (32). X-ray photoelectron spectroscopy is used to analyze the involved mechanisms. It is indicated that more GeON and less GeOx (x 〈 2) are formed on the Ge surface during NH3-plasma treatment than the NE-plasma treatment, resulting in a high-quality high-k/Ge interface, because H atoms and NH radicals in NHa-plasma can enhance volatilization of the unstable low-k GeOx, creating high-quality GeON passivation layer. Moreover, more nitrogen incorporation in ZrON/GeON induced by NHa-plasma treatment can build a stronger N barrier and thus more effectively inhibit in-diffusion of O and Ti from high-k gate dielectric and out-diffusion of Ge.
基金supported by the National Natural Science Foundation of China(Nos.61176100,61274112)
文摘The effects of different NH3-plasma treatment procedures on interracial and electrical properties of Ge MOS capacitors with stacked gate dielectric of HtTiON/TaON were investigated. The NH3-plasma treatment was performed at different steps during fabrication of the stacked gate dielectric, i.e. before or after interlayer (TaON) deposition, or after deposition ofhigh-k dielectric (HfriON). It was found that the excellent interface quality with an interface-state density of 4.79 × 101l eV-lcm-2 and low gate leakage current (3.43 ×10-5 A/cm2 at Vg = 1 V) could be achieved for the sample with NH3-plasma treatment directly on the Ge surface before TaON deposition. The involved mechanisms are attributed to the fact that the NH3-plasma can directly react with the Ge surface to form more Ge-N bonds, i.e. more GeOxNy, which effectively blocks the inter-diffusion of elements and suppresses the formation of unstable GeOx interfacial layer, and also passivates oxygen vacancies and dangling bonds near/at the interface due to more N incorporation and decomposed H atoms from the NH3-plasma.
基金supported by the State Key Development Program for Basic Research of China(No.2006CB302704)
文摘MOS capacitors with hafnium oxynitride(HfON)gate dielectrics were fabricated on Ge and Si substrates using the RF reactive magnetron sputtering method.A large amount of fixed charges and interface traps exist at the Ge/HfON interface.HRTEM and XPS analyses show that Ge oxides were grown and diffused into HfON after post metal annealing.A Si nitride interfacial layer was inserted between Ge and HfON as diffusion barrier.Using this method,well behaved capacitance–voltage and current–voltage characteristics were obtained.Finally hystereses are compared under different process conditions and possible causes are discussed.
基金supported by the National Natural Science Foundation of China(No.61274112)the Natural Science Foundation of Hubei Province(No.2011CDB165)the Scientific Research Program of Huanggang Normal University(No.2012028803)
文摘LaON,LaTiO and LaTiON films are deposited as gate dielectrics by incorporating N or/and Ti into La_2O_3 using the sputtering method to fabricate Ge MOS capacitors,and the electrical properties of the devices are carefully examined.LaON/Ge capacitors exhibit the best interface quality,gate leakage property and device reliability,but a smaller k value(14.9).LaTiO/Ge capacitors exhibit a higher k value(22.7),but a deteriorated interface quality,gate leakage property and device reliability.LaTiON/Ge capacitors exhibit the highest k value(24.6),and a relatively better interface quality(3.1×10^(11) eV^(-1)cm^(-2)),gate leakage property(3.6 × 10^(-3) A/cm^2 at V_g = 1V+V_(fb)) and device reliability.Therefore,LaTiON is more suitable for high performance Ge MOS devices as a gate dielectric than LaON and LaTiO materials.