A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performa...A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performance and corresponding structural feature was comprehensively evaluated by XPS,in situ DRIFTS,BET,XRD,SEM and H_(2)-TPR.Meanwhile,10%Gd0.25Ce0.75/MPB exhibited excellent performance,favorable SO_(2) and moisture toleration over a broad temperature range from 160 to 320℃,where it achieved 96.8%removal efficiency with 90.5%selectivity at 200℃.The single or united effects of O_(2),SO_(2),H_(2)O on HCHO abatement over 10%Gd_(0.25)Ce_(0.75)/MPB were tested,and the findings demonstrated that the suppressive effects of SO_(2) and H_(2)O outweighed the promoting influence of O_(2) within a specific range.Gd and Ce co-modified MPB revealed superior HCHO removal capability in contrast to that of Gd or Ce severally modified MPB,ascribing to the synergistic effect of GdO_(x) and CeO_(x) and benefitting from the augmentation of surface area and total pore volume,the aggrandizement of surface active oxygen species,the promotion of redox ability and the inhibition crystallization of CeO_(x).According to in situ DRIFTS,a series of intermediates including formate species and dioxymethylene(DOM)were produced,which would eventually decompose into H_(2)O and CO_(2).In addition,the mass transfer and diffusion of the reactants along with the accessibility of the catalytic sites were enlarged by the hierarchical porous structure of the support,which were also answerable for its distinguished catalytic performance.Furthermore,10%Gd0.25Ce0.75/MPB possessed remarkable potential for industrial applications.展开更多
The effects of Ce, Y and Gd additions on the as-cast microstructure and mechanical properties of Mg-3Sn-2Sr alloy were investigated and compared by scanning electron microscopy, X-ray diffraction, differential scannin...The effects of Ce, Y and Gd additions on the as-cast microstructure and mechanical properties of Mg-3Sn-2Sr alloy were investigated and compared by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry analysis, tensile and creep tests. The results indicate that the Mg-3Sn-2Sr ternary alloy is mainly composed ofα-Mg, primary and eutectic SrMgSn, and Mg2Sn phases. After the additions of 1.0%Ce, 1.0%Y and 1.0%Gd to the Mg-3Sn-2Sr alloy, the Mg12Ce, YMgSn, GdMgSn and/or Mg17Sr2 phases are formed, respectively. At the same time, the formation of the primary SrMgSn phase is suppressed and the coarse needle-like primary SrMgSn phase is modified and refined. In addition, the additions of 1.0% Ce, 1.0% Y and 1.0% Gd to the Mg-3Sn-2Sr alloy can simultaneously improve the tensile and creep properties of the alloy. Among the Ce-, Y-and Gd-containing alloys, the tensile properties of the Ce-containing alloy are relatively higher than those of the Y-and Gd-containing alloys.展开更多
基金supported by the Scientific Research Project of Hunan Provincial EducationDepartment(No.22B0458)the National Natural Science Foundation of China(No.52270102).
文摘A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performance and corresponding structural feature was comprehensively evaluated by XPS,in situ DRIFTS,BET,XRD,SEM and H_(2)-TPR.Meanwhile,10%Gd0.25Ce0.75/MPB exhibited excellent performance,favorable SO_(2) and moisture toleration over a broad temperature range from 160 to 320℃,where it achieved 96.8%removal efficiency with 90.5%selectivity at 200℃.The single or united effects of O_(2),SO_(2),H_(2)O on HCHO abatement over 10%Gd_(0.25)Ce_(0.75)/MPB were tested,and the findings demonstrated that the suppressive effects of SO_(2) and H_(2)O outweighed the promoting influence of O_(2) within a specific range.Gd and Ce co-modified MPB revealed superior HCHO removal capability in contrast to that of Gd or Ce severally modified MPB,ascribing to the synergistic effect of GdO_(x) and CeO_(x) and benefitting from the augmentation of surface area and total pore volume,the aggrandizement of surface active oxygen species,the promotion of redox ability and the inhibition crystallization of CeO_(x).According to in situ DRIFTS,a series of intermediates including formate species and dioxymethylene(DOM)were produced,which would eventually decompose into H_(2)O and CO_(2).In addition,the mass transfer and diffusion of the reactants along with the accessibility of the catalytic sites were enlarged by the hierarchical porous structure of the support,which were also answerable for its distinguished catalytic performance.Furthermore,10%Gd0.25Ce0.75/MPB possessed remarkable potential for industrial applications.
基金Project(CSTC2013jcyjC60001)supported by the Chongqing Science and Technology Commission of ChinaProject(KJ120834)supported by the Chongqing Education Commission of ChinaProject(CQUT1205)supported by the Open Funds from Key Laboratory of Manufacture and Test Techniques for Automobile Parts,Ministry of Education,Chongqing University of Technology,China
文摘The effects of Ce, Y and Gd additions on the as-cast microstructure and mechanical properties of Mg-3Sn-2Sr alloy were investigated and compared by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry analysis, tensile and creep tests. The results indicate that the Mg-3Sn-2Sr ternary alloy is mainly composed ofα-Mg, primary and eutectic SrMgSn, and Mg2Sn phases. After the additions of 1.0%Ce, 1.0%Y and 1.0%Gd to the Mg-3Sn-2Sr alloy, the Mg12Ce, YMgSn, GdMgSn and/or Mg17Sr2 phases are formed, respectively. At the same time, the formation of the primary SrMgSn phase is suppressed and the coarse needle-like primary SrMgSn phase is modified and refined. In addition, the additions of 1.0% Ce, 1.0% Y and 1.0% Gd to the Mg-3Sn-2Sr alloy can simultaneously improve the tensile and creep properties of the alloy. Among the Ce-, Y-and Gd-containing alloys, the tensile properties of the Ce-containing alloy are relatively higher than those of the Y-and Gd-containing alloys.