期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Influence of Gd doping on the absolute quantum efficiency and lifetime of Eu_xGd_(1-x)(TTA)_3 phens 被引量:6
1
作者 Ting-Ting Dai Lei Liu +9 位作者 Dong-Liang Tao Shi-Gang Li HongZhang Yu-Min Cui Yong-Zhong Wang Ji-Tang Chen Kun Zhang Wen-Zhong Sun Xiao-Yun Zhao gel Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第6期892-896,共5页
Absolute quantum yield (Ф) is one of the most important parameters to evaluate the potential of novel materials. Lanthanide complexes EuxGd1-x(TTA)3phens are synthesized with the ratio of Gd3+ dopant concentrati... Absolute quantum yield (Ф) is one of the most important parameters to evaluate the potential of novel materials. Lanthanide complexes EuxGd1-x(TTA)3phens are synthesized with the ratio of Gd3+ dopant concentration ranging from 10% to 90% to improve the absolute quantum yield. EuxGd1-x(TTA)3phens possess similar infrared and ultraviolet spectra, showing that they have similar molecular structures. The absolute emission quantum yields of EuxGd1-x(TTA)3phens are determined using a fluoromax-4 spectrofluorometer equipped with an integrating sphere. The fluorescence lifetimes of the EuxGd1-x(TTA)3phens are measured in the same experiment. It was found that both absolute quantum yields and fluorescence lifetimes of EuxGd1-x(TTA)3phens are of quasi-periodic variation with the change of the Gd3. dopant concentrations. The absolute quantum efficiency and fluorescence lifetime vary with respect to the Gd content in an opposite fashion, indicating that the rate of energy absorption by the EuxGd1-x(TTA)3phens and the conversion to light energy is critical for the absolute quantum efficiency. The radiative rate constant Kr and non-radiative rate constant Knr are calculated. The dependence of Kr and Knr on the Gd3+ dopant concentrations is very similar to that of absolute quantum efficiency. The radiation rate constant Kr and absolute quantum efficiency have a linear relationship. 展开更多
关键词 JEuropium complexes gd doping Absolute quantum yield Fluorescent lifetime
原文传递
Tuning magneto-dielectric properties of Co_(2)Z ferrites via Gd doping for high-frequency applications
2
作者 武剑 卢冰 +6 位作者 张颖 陈一鑫 孙凯 陈大明 李强 刘颖力 李颉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期468-473,共6页
Magneto-dielectric properties of Co_(2)Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work.Ba_(3)Co_(2)Fe_(24-x)Gd_(x)O_(41)(x=0.00,0.05,0.10,0.15,an... Magneto-dielectric properties of Co_(2)Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work.Ba_(3)Co_(2)Fe_(24-x)Gd_(x)O_(41)(x=0.00,0.05,0.10,0.15,and 0.20)materials are successfully prepared by using solid-state method at 925℃for 4 h with 2.5-wt%Bi_(2)O_(3)sintering aids.The content of Gd^(3+)ion can affect micromorphology,grain size,bulk density,and magneto-dielectric properties of the ferrite.With Gd^(3+)ion content increasing,saturation magnetization(Ms)first increases and then decreases.The maximum value of Ms is 44.86 emu/g at x=0.15.Additionally,sites occupied by Gd^(3+)ions can change magnetic anisotropy constant of the ferrite.Magnetocrystalline anisotropy constant(K_1)is derived from initial magnetization curve,and found to be related to spin-orbit coupling and intersublattice interactions between metal ions.The real part of magnetic permeability(μ′)and real part of dielectric permittivity(ε′)are measured in a frequency range of 10 MHz-1 GHz.When x=0.15,material has excellent magneto-dielectric properties(μ′≈12.2 andε′≈17.61),low magnetic loss(tanδμ≈0.03 at 500 MHz),and dielectric loss(tanδε≈0.04 at 500 MHz).The results show that Gd-doped Co_(2)Z ferrite has broad application prospects in multilayer filters and high-frequency antennas. 展开更多
关键词 Co_(2)Z ferrite magneto-dielectric properties gd doping high-frequency applications
原文传递
Gd-doped ZnFe_(2)O_(4) multi-shell microspheres for enhancing photocatalytic H_(2) production or antibiotic degradation
3
作者 Shu-yuan Liu Suiying Dong +2 位作者 Yitong Hao Kezhen Qi Anzhong Peng 《Journal of Rare Earths》 2025年第7期1412-1420,共9页
It is anticipated to remove highly hazardous tetracycline antibiotic from aqueous solution photocatalytically by using Gd doped spinal ferrite.In this work,both ZnFe_(2)O_(4)and Gd doped ZnFe_(2)O_(4)photocatalysts we... It is anticipated to remove highly hazardous tetracycline antibiotic from aqueous solution photocatalytically by using Gd doped spinal ferrite.In this work,both ZnFe_(2)O_(4)and Gd doped ZnFe_(2)O_(4)photocatalysts were hydrothermally fabricated and characterized by different techniques.The spherical photocatalysts show extended photocatalytic removal efficiency under visible light.The optimized sample(ZnFe_(1.96)Cd_(0.04)O_(4))removes 78%antibiotic in 80 min.Moreover,under simulated solar light irradiation,the rate of hydrogen produced from water splitting photocatalysis with ZnFe_(1.96)Cd_(0.04)O_(4)reaches 230.4μmol/(g h).These increased activities are attributed to the increased specific surface area,the expanded light absorption range and the enhanced charge separation realized by doping Gd.According to the charge trapping study,both superoxide(·O_(2)^(-))and hydroxyl radicals(·OH)were the major active species in the process of removing antibiotic.This research provides a feasible way to fabricate low cost photocatalysts for the eradication of highly hazardous pollutants from aqueous solution. 展开更多
关键词 gd doped ZnFe_(2)0_(4) Photocatalysis Spherical morphology Antibiotic degradation Hydrogen production Rare earths
原文传递
Constructing bimodal nanoprobe based on Gd:AgInS_(2)/ZnS quantum dots for fluorometric/magnetic resonance imaging in mesenchymal stem cells 被引量:1
4
作者 Dan Yang Xian Wei +7 位作者 Zhiyan Piao Zhongjie Cui Haiyang He Zhuoqi Wen Wanlu Zhang Le Wang Shiliang Mei Ruiqian Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第17期116-122,共7页
Mesenchymal stem cells(MSCs)hold great promise in regenerative medicine and received overwhelm-ing concerns to promote their therapeutic effects.Owing to the shortage of MSCs-specific biomarkers,bimodal imaging nanopr... Mesenchymal stem cells(MSCs)hold great promise in regenerative medicine and received overwhelm-ing concerns to promote their therapeutic effects.Owing to the shortage of MSCs-specific biomarkers,bimodal imaging nanoprobes with integrated complementary information are of great importance in ameliorating the efficacy of MSCs terminal tracking.In this study,a noninvasive dual-mode imaging nanoprobe with enhanced detection sensitivity and spatial resolution based on alloyed Gd:AgInS_(2)/ZnS quantum dots(QDs)was first fabricated through a microwave-assisted heating method.The QDs with red emissive fluorescence exhibit excellent biocompatibility in MSCs under a confocal microscope.As for magnetic resonance imaging(MRI),the longitudinal relaxation rate of 11.1420 mM^(-1) S^(-1) of Gd:AgInS_(2)/ZnS QDs was achieved,which was 1.7 times higher than that of commercial MRI contrast agent(6.4667 mM^(-1) S^(-1)).Furthermore,the cellular internalization of Gd:AgInS_(2)/ZnS QDs exerts no significant effect on the adipogenesis of MSCs and is conducive to the observation of further adipogenic differentiation.Our work helps to verify the promising prospect to develop a bimodal nanoprobe of fluorescence/MRI based on Gd:AgInS_(2)/ZnS QDs,which could monitor the differentiation and migration of MSCs for further therapeu-tic approach. 展开更多
关键词 AgInS_(2)quantum dots gd doping Dual-mode imaging Mesenchymal stem cells Differentiation
原文传递
Effect of rGO support on Gd@ZnO for UV-visible-light driven photocatalytic organic pollutant degradation 被引量:1
5
作者 Baskaran Palanivel Md Shahadat Hossain +6 位作者 Romulo R.Macadangdang Jr. S.Sahaya Jude Dhas Abdullah M.Al-Enizi Mohd Ubaidullah Woo Kyoung Kim Sreedevi Gedi S.Ignatius Arockiam 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第10期1525-1531,I0002,共8页
In this manuscript,we report the hydrothermally prepared rGO/Gd@ZnO nanocomposite for the utilization of photocatalytic Rh B(rhodamine B)dye degradation.The required characterization techniques were carried out to ana... In this manuscript,we report the hydrothermally prepared rGO/Gd@ZnO nanocomposite for the utilization of photocatalytic Rh B(rhodamine B)dye degradation.The required characterization techniques were carried out to analyse the structural,morphological,chemical,environmental and optical behaviour of the prepared nanoparticles.Photocatalytic efficiency of the prepared nanoparticles was studied by Rh B dye degradation upon UV-Vis-light illumination which reveals that composite catalyst degrades the dye molecule about 91%after 40 min of irradiation.On comparing the higher degradation efficiency of the rGO/Gd@ZnO nanocomposite with that of ZnO and Gd doped ZnO,it reveals a greater reduction of charge carriers'recombination,higher visible-light utilization and higher adsorption efficiency.Elemental trapping experiment and recycling test were conducted to study the influence of active radicals for the degradation reaction and to know the stability of the prepared nanocomposite,respectively.Hence,this rGO supported Gd doped ZnO nanocomposite can provide a new path way in preparing a highly efficient photocatalyst for organic pollutant degradation at large. 展开更多
关键词 rGO gd doped ZnO UV-Vis photocatalyst Dye degradation Rare earths
原文传递
Study on analysis of crystal structure in CeO_2 doped with Er_2O_3 or Gd_2O_3 被引量:1
6
作者 Yuki Tahara Kazufumi Yasunaga +2 位作者 Toshiyuki Matsui Fuminobu Hori Akihiro Iwase 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期164-167,共4页
To simulate the effects of burnable poison doping in nuclear fuel UO2,Er2O3(or Gd2O3)-doped CeO2 pellets were prepared. Changes in lattice constant and atomic disordering for CeO2 due to the Er2O3 and Gd2O3 doping wer... To simulate the effects of burnable poison doping in nuclear fuel UO2,Er2O3(or Gd2O3)-doped CeO2 pellets were prepared. Changes in lattice constant and atomic disordering for CeO2 due to the Er2O3 and Gd2O3 doping were measured by means of XRD and XAFS. By the Er2O3 doping,the lattice constant decreased,and a disordering of lattice structure was induced in the samples. The doping with Er2O3 also induced the disordering of atomic arrangement around Er atoms,which was observed through the change in XAFS spectra. In contrast,the effect of Gd2O3 doping was smaller than that of Er2O3 doping. The result was discussed in terms of ionic size of dopants in CeO2 crystal. 展开更多
关键词 CeO2 ceramic pellets Er2O3 and gd2O3 doping Change in lattice structure XRD XAFS rare earths
原文传递
Linker gadolinium as charge channel and singlet oxygen activation site in graphitic carbon nitride for enhancing photocatalytic decomposition of tetracycline 被引量:1
7
作者 Jianmin Luo Wenqin Li +6 位作者 Xinglei Wang Eric Lichtfouse Donglan Huang Xiaoyuan Chen Yi Zhang Lejie Zhu Chuanyi Wang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第5期827-837,I0001,共12页
Reactive oxygen species are essential in photocatalytic water treatment.In this paper,Gd doped carbon nitride(CN)photocatalysts were prepared by simple thermal polymerization for the photocatalytic degradation of tetr... Reactive oxygen species are essential in photocatalytic water treatment.In this paper,Gd doped carbon nitride(CN)photocatalysts were prepared by simple thermal polymerization for the photocatalytic degradation of tetracycline under visible light irradiation.The photodegradation rate of 1.OGdCN is as high as 95%in 18 min,and the photocatalytic performance is much higher than that of CN.The improvement of photocatalytic performance is mainly attributed to the fact that Gd ion implantation directly provides active sites for oxygen activation and induces the formation of N vacancies.The results of characterizations show that the introduction of Gd in CN can improve the conversion ability of activated oxygen,carrier separation and energy band structure adjustment.Therefore,1.0GdCN photocatalyst can be employed for efficient photocatalytic synthesis of tetracycline.Furthermore,three ways of photocatalytic degradation of tetracycline were revealed by high performance liquid chromatographymass spectrometry.This work provides insights into the doping strategy of CN to improve the production of reactive oxygen species for environmental remediation. 展开更多
关键词 PHOTOCATALYSIS TETRACYCLINE Hydrogen peroxide gd doped CN Singlet oxygen Rare earths
原文传递
Synthesis of luminescent KY_3F_(10) nanopowder multi-doped with lanthanide ions by a co-precipitation method 被引量:2
8
作者 Szymon Goderski Marcin Runowski Stefan Lis 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第8期808-813,共6页
A series of KY3F10 nanophosphors doped with Gd3+, Ce3+ and Eu3+ ions were obtained with the use of a co-precipitation method. The resulting products were white precipitates, consisting of spherical particles with d... A series of KY3F10 nanophosphors doped with Gd3+, Ce3+ and Eu3+ ions were obtained with the use of a co-precipitation method. The resulting products were white precipitates, consisting of spherical particles with diameter about 150-200 nm, which was confirmed using transmission electron microscopy (TEM) technique. Powder X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) measurements confirmed appropriate structures of the nanoparticles obtained. Spectroscopic properties of the prod- ucts were examined on the basis of the measured excitation/emission spectra and luminescence decay curves. The synthesized sam- ples showed orange-red luminescence, characteristic for Eu3+ ions. The reaction process was performed in required alkaline pH ad- justed with the use of ethylenediaminetetraacetic acid (EDTA) and potassium hydroxide. The samples containing large amounts of Gd3+ dooant ions exhibited a tendencv to form nroducts with different momhologies. 展开更多
关键词 fluorides CO-PRECIPITATION NANOPHOSPHORS luminescence NANOPOWDERS Ce3+/gd3+/Eu3+ doping rare earths
原文传递
Synergistic effects and electrocatalytic insight of single-phase hexagonal structure as low-temperature solid oxide fuel cell cathode
9
作者 Yuzheng Lu Asma Noor +6 位作者 Jahangeer Ahmed Najah Alwadie Majid Niaz Akhtar Sara Abid Muhammad Yousaf Mustafa Mahmoud Muhammad Aslam 《Journal of Rare Earths》 2025年第7期1390-1399,共10页
Enhancing the electrocatalytic activity of the electrode materials,specifically oxygen reduction reaction(ORR),at lower operating temperatures(<600℃)is the prime rank to realize the commercialization of solid oxid... Enhancing the electrocatalytic activity of the electrode materials,specifically oxygen reduction reaction(ORR),at lower operating temperatures(<600℃)is the prime rank to realize the commercialization of solid oxide fuel cells(SOFCs)research.Herein,a new hexagonal structure-based cathode material was developed with the co-doping of Gd_(2)O_(3)and Cr_(2)O_(3)of parent SrFe_(12)O_(19)oxide,respectively.At 550-475℃,Sr_(0.90)Gd_(0.10)Fe_(11.90)Cr_(0.10)O_(19)(SFO-10)cathode sample leading to the large peak power density(PPD)of 395 mW/cm^(2),has appropriate surface oxygen defects(O_(β))up to 17%,as verified by X-ray photoelectron microscopy(XPS).Theoretical calculations reveal that the co-doping of Gd and Cr oxides creates lattice disorder at the hexagonal lattice,which decreases the energy barrier for ion transport and enhances the electrocatalytic characteristics of ORR.Consequently,the SFO-10 cathode shows a favorable ORR activity with the least lower polarization resistance(ASR)at 550℃with gadolinium-doped ceria(GDC)electrolyte.This work provides a self-assembled single-phase hexagonal cathode to accelerate the lowtemperature hindrance of SOFC technology. 展开更多
关键词 Hexagonal structure Solid oxide fuel cell(SOFC) Electrocatalytic activity Cathode gd and Cr doping Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部