期刊文献+
共找到430篇文章
< 1 2 22 >
每页显示 20 50 100
Spatial batch optimal design based on self-learning Gaussian process models for LPCVD processes 被引量:1
1
作者 孙培 谢磊 陈荣辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1958-1964,共7页
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ... Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process. 展开更多
关键词 Batchwise LPCVD Transport processes Spatial distribution gaussian process model Optimal design
在线阅读 下载PDF
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model 被引量:1
2
作者 周亚同 樊煜 +1 位作者 陈子一 孙建成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期22-26,共5页
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au... The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. 展开更多
关键词 GPM Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the gaussian process Mixture model EM SHC
原文传递
Improved fast model migration method for centrifugal compressor based on bayesian algorithm and Gaussian process model
3
作者 CHU Fei DAI BangWu +2 位作者 LU NanNan MA XiaoPing WANG FuLi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第12期1950-1958,共9页
Design and operation optimization of centrifugal compressor are always based on an accurate prediction model, however, due to the short time operation and lack of data information, it is difficult to get an accurate p... Design and operation optimization of centrifugal compressor are always based on an accurate prediction model, however, due to the short time operation and lack of data information, it is difficult to get an accurate prediction model of a new centrifugal compressor in time. This paper applies an improved fast model migration method(FMM method) to develop the model of the new centrifugal compressor. The method adapts a Gaussian Process(GP) model from an old centrifugal compressor to fit a new and similar centrifugal compressor, and the adaptation is conducted by a scale-bias adjustment migration technology. In order to obtain the better estimated parameters of migration, Bayesian method, which takes the prior knowledge into consideration, is used in the sequential experiment. The approach is validated by a specific simulation bench. The results indicate that the applied approach can achieve a better prediction precision with fewer data of the new centrifugal compressor compared to pure GP method, and can model the new centrifugal compressor rapidly. 展开更多
关键词 Bayesian CENTRIFUGAL COMPRESSOR gaussian process model model MIGRATION performance prediction
原文传递
Gaussian Process for a Single-channel EEG Decoder with Inconspicuous Stimuli and Eyeblinks
4
作者 Nur Syazreen Ahmad Jia Hui Teo Patrick Goh 《Computers, Materials & Continua》 SCIE EI 2022年第10期611-628,共18页
A single-channel electroencephalography(EEG)device,despite being widely accepted due to convenience,ease of deployment and suitability for use in complex environments,typically poses a great challenge for reactive bra... A single-channel electroencephalography(EEG)device,despite being widely accepted due to convenience,ease of deployment and suitability for use in complex environments,typically poses a great challenge for reactive brain-computer interface(BCI)applications particularly when a continuous command from users is desired to run a motorized actuator with different speed profiles.In this study,a combination of an inconspicuous visual stimulus and voluntary eyeblinks along with a machine learning-based decoder is considered as a new reactive BCI paradigm to increase the degree of freedom and minimize mismatches between the intended dynamic command and transmitted control signal.The proposed decoder is constructed based on Gaussian Process model(GPM)which is a nonparametric Bayesian approach that has the advantages of being able to operate on small datasets and providing measurements of uncertainty on predictions.To evaluate the effectiveness of the proposed method,the GPM is compared against other competitive techniques which include k-Nearest Neighbors,linear discriminant analysis,support vector machine,ensemble learning and neural network.Results demonstrate that a significant improvement can be achieved via the GPM approach with average accuracy reaching over 96%and mean absolute error of no greater than 0.8 cm/s.In addition,the analysis reveals that while the performances of other existing methods deteriorate with a certain type of stimulus due to signal drifts resulting from the voluntary eyeblinks,the proposed GPM exhibits consistent performance across all stimuli considered,thereby manifesting its generalization capability and making it a more suitable option for dynamic commands with a single-channel EEG-controlled actuator. 展开更多
关键词 Brain-computer interface dynamic command electroence phalography gaussian process model visual stimulus voluntary eyeblinks
在线阅读 下载PDF
Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes 被引量:10
5
作者 Congli Mei Yong Su +2 位作者 Guohai Liu Yuhan Ding Zhiling Liao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第1期116-122,共7页
The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation proce... The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes. 展开更多
关键词 Dynamic modeling process systems Instrumentation gaussian mixture regression Fermentation processes
在线阅读 下载PDF
ON USING NON-LINEAR CANONICAL CORRELATION ANALYSIS FOR VOICE CONVERSION BASED ON GAUSSIAN MIXTURE MODEL
6
作者 Jian Zhihua Yang Zhen 《Journal of Electronics(China)》 2010年第1期1-7,共7页
Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters fo... Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation. 展开更多
关键词 Speech processing Voice conversion Non-Linear Canonical Correlation Analysis(NLCCA) gaussian Mixture model(GMM)
在线阅读 下载PDF
An adaptive sequential experiment design method for model validation 被引量:5
7
作者 Ke FANG Yuchen ZHOU Ping MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1661-1672,共12页
Efficient experiment design is of great significance for the validation of simulation model with high nonlinearity and large input space.Excessive validation experiment raises the cost while insufficient test increase... Efficient experiment design is of great significance for the validation of simulation model with high nonlinearity and large input space.Excessive validation experiment raises the cost while insufficient test increases the risks of accepting an invalid model.In this paper,an adaptive sequential experiment design method combining global exploration criterion and local exploitation criterion is proposed.The exploration criterion utilizes discrepancy metric to improve the space-filling property of the design points while the exploitation criterion employs the leave one out error to discover informative points.To avoid the clustering of samples in the local region,an adaptive weight updating approach is provided to maintain the balance between exploration and exploitation.Besides,the credibility distribution function characterizing the relationship between the input and result credibility is introduced to support the model validation experiment design.Finally,six benchmark problems and an engineering case are applied to examine the performance of the proposed method.The experiments indicate that the proposed method achieves satisfactory performance for function approximation in accuracy and convergence. 展开更多
关键词 Adaptive sequential experiment design Credibility distribution function gaussian process model METAmodelING model validation
原文传递
Model for Cucumber Disease Images based on GMM
8
作者 任晓东 刘美琴 白慧慧 《Plant Diseases and Pests》 CAS 2011年第5期6-10,共5页
Based on the accurate analysis of cucumber disease images, the low level feature of images was effectively extracted, and Gaussian Mixture Model (GMM) for 8 common cucumber diseases was built. The parameters of GMM ... Based on the accurate analysis of cucumber disease images, the low level feature of images was effectively extracted, and Gaussian Mixture Model (GMM) for 8 common cucumber diseases was built. The parameters of GMM were estimated by the algorithm of expectation maximum (EM) to accurately charac- terize the feature distribution of 8 cucumber diseases, thus increased the correct identification of cucumber diseases and accurate grasping of damage conditions, and provided basis for achievement of real-time and accurate prediction of cucumber diseases. 展开更多
关键词 Cucumber disease Image processing Mathematical modeling gaussian Mixture model China
在线阅读 下载PDF
A novel multimode process monitoring method integrating LCGMM with modified LFDA 被引量:4
9
作者 任世锦 宋执环 +1 位作者 杨茂云 任建国 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1970-1980,共11页
Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi... Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process. 展开更多
关键词 Multimode process monitoring Discriminant local consistency gaussian mixture model Modified local Fisher discriminant analysis Global fault detection index Tennessee Eastman process
在线阅读 下载PDF
Machine learning for prediction of retained austenite fraction and optimization of processing in quenched and partitioned steels
10
作者 Shuai Wang Jie Li +3 位作者 Li-yang Zeng Xun-wei Zuo Nai-lu Chen Yong-hua Rong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第8期2002-2013,共12页
The metastable retained austenite(RA)plays a significant role in the excellent mechanical performance of quenching and partitioning(Q&P)steels,while the volume fraction of RA(V_(RA))is challengeable to directly pr... The metastable retained austenite(RA)plays a significant role in the excellent mechanical performance of quenching and partitioning(Q&P)steels,while the volume fraction of RA(V_(RA))is challengeable to directly predict due to the complicated relationships between the chemical composition and process(like quenching temperature(Qr)).A Gaussian process regression model in machine learning was developed to predict V_(RA),and the model accuracy was further improved by introducing a metallurgical parameter of martensite fraction(fo)to accurately predict V_(RA) in Q&P steels.The developed machine learning model combined with Bayesian global optimization can serve as another selection strategy for the quenching temperature,and this strategy is very effcient as it found the"optimum"Qr with the maximum V_(RA) using only seven consecutive iterations.The benchmark experiment also reveals that the developed machine learning model predicts V_(RA) more accurately than the popular constrained carbon equilibrium thermodynamic model,even better than a thermo-kinetic quenching-partitioning-tempering-local equilibrium model. 展开更多
关键词 Q&P steel Retained austenite fraction Machine learning Quenching temperature gaussian process regression model
原文传递
JOINT HOLDER CONTINUITY OF PARABOLIC ANDERSON MODEL 被引量:1
11
作者 Yaozhong HU Khoa Lê 《Acta Mathematica Scientia》 SCIE CSCD 2019年第3期764-780,共17页
We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with tem... We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density μ(ξ). We assume that ■ and ■ , where αi, i = 1, · · ·, d(or α) can take negative value. 展开更多
关键词 gaussian process stochastic heat equation parabolic Anderson model multiplicative noise chaos expansion HYPERCONTRACTIVITY H?lder continuity joint Holder continuity
在线阅读 下载PDF
On Segmentation of Moving Objects by Integrating PCA Method with the Adaptive Background Model 被引量:1
12
作者 Noureldaim Emadeldeen Mohammed Jedra Noureldeen Zahid 《Journal of Signal and Information Processing》 2012年第3期387-393,共7页
Tracking and segmentation of moving objects are suffering from many problems including those caused by elimination changes, noise and shadows. A modified algorithm for the adaptive background model is proposed by link... Tracking and segmentation of moving objects are suffering from many problems including those caused by elimination changes, noise and shadows. A modified algorithm for the adaptive background model is proposed by linking Gaussian mixture model with the method of principal component analysis PCA. This approach utilizes the advantage of the PCA method in providing the projections that capture the most relevant pixels for segmentation within the background models. We report the update on both the parameters of the modified method and that of the Gaussian mixture model. The obtained results show the relatively outperform of the integrated method. 展开更多
关键词 PIXELS gaussian MIXTURE model PRINCIPLE Component Analysis Background model Noise process Segmentation
在线阅读 下载PDF
Multimode Process Monitoring Based on the Density-Based Support Vector Data Description
13
作者 郭红杰 王帆 +2 位作者 宋冰 侍洪波 谭帅 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期342-348,共7页
Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the... Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process. 展开更多
关键词 Eastman Tennessee sparse utilized illustrated kernel Bayesian charts validity false
在线阅读 下载PDF
基于概率推理学习优化的无人自行车质量偏心校正方法
14
作者 黄用华 梁子彦 +1 位作者 庄未 任仰华 《控制与决策》 北大核心 2025年第5期1723-1732,共10页
车体质量偏心是无人自行车一个重要的性能参数,为了降低车体质量偏心对无人自行车航向轨迹的影响,提出一种基于有模型强化学习原理的概率推理学习优化(PILO)偏心校正方法.该方法以车体侧向倾角(倾角速度)、车把转角(转角速度)以及车把... 车体质量偏心是无人自行车一个重要的性能参数,为了降低车体质量偏心对无人自行车航向轨迹的影响,提出一种基于有模型强化学习原理的概率推理学习优化(PILO)偏心校正方法.该方法以车体侧向倾角(倾角速度)、车把转角(转角速度)以及车把控制力矩为输入,以车体侧向倾角速度(倾角加速度)以及车把转角速度(车把转角加速度)为输出,利用高斯过程回归(GPR)构建系统的概率动态模型(PDM)表征系统的不确定性动态,并将其用于后续的状态序列预测;将质量偏心作为车把PD控制器的一个参数,考虑车体航向与车把转角间的运动约束,通过车体航向角速度构造目标函数,优化并校正系统的质量偏心参数.设定8种不同的负载偏心开展无人自行车仿真以及物理样机实验,结果表明:PILO系统校正的绝对误差不超过0.005 rad,相对误差低于10%,且展现了一定的抗干扰能力;与无模型的认知学习偏心优化(RLO)校正系统相比,PILO系统在参数整定难度、智能化以及容错能力等方面具有一定优势. 展开更多
关键词 无人自行车 车体航向 质量偏心校正 概率推理学习优化 概率动态模型 高斯过程回归
原文传递
毗邻断层桥梁概率性地震需求模型及地震易损性研究
15
作者 陈力波 陈何煜 +4 位作者 栗怀广 高芳浩 谷音 邹育麟 陈誉 《土木工程学报》 北大核心 2025年第12期90-102,共13页
文章旨在研究非一致地震激励下桥梁的地震响应规律,并建立毗邻断层区域桥梁地震易损性模型。以某实际跨断层大桥两侧引桥为研究对象,首先概述宽频带混合法基本原理,利用芦山地震实测记录验证其有效性,在此基础上生成桥梁工址处地震动。... 文章旨在研究非一致地震激励下桥梁的地震响应规律,并建立毗邻断层区域桥梁地震易损性模型。以某实际跨断层大桥两侧引桥为研究对象,首先概述宽频带混合法基本原理,利用芦山地震实测记录验证其有效性,在此基础上生成桥梁工址处地震动。随后,针对同一地震事件和同一地震强度两种工况,基于高斯过程回归方法,构建考虑异方差效应的桥梁各构件概率性地震需求模型,并在此基础上生成地震易损性曲线。研究表明,所构建的概率性地震需求模型能较准确反映桥梁响应及其离散程度随地震动强度指标的变化趋势,为精确的地震易损性分析提供更全面的途径。对比不同构件的概率性地震需求模型及易损性曲线发现,支座是毗邻断层桥梁最易受损的构件。同时,采用矩震级作为易损性分析指标能有效地将各输入点间不同的地震动强度统一起来,更精确地刻画毗邻断层区域在非一致地震动激励下的易损性差异。该文可为毗邻断层区域桥梁的抗震风险评估和加固优先级决策提供参考依据。 展开更多
关键词 毗邻断层地震动 桥梁工程 高斯过程回归 概率性地震需求模型 地震易损性
原文传递
基于在线高斯模型驱动MPC的四旋翼轨迹跟踪控制 被引量:2
16
作者 叶大鹏 陈书达 张之得 《飞行力学》 北大核心 2025年第1期56-62,共7页
针对四旋翼飞行器轨迹跟踪控制中模型预测控制(MPC)的标称模型不确定问题,提出了一种基于在线高斯过程回归模型增强的模型预测控制(OGP-MPC)方法,利用在线高斯过程回归(OGP)模型补偿标称模型的动力学误差。设计了一种新的在线GP模型更... 针对四旋翼飞行器轨迹跟踪控制中模型预测控制(MPC)的标称模型不确定问题,提出了一种基于在线高斯过程回归模型增强的模型预测控制(OGP-MPC)方法,利用在线高斯过程回归(OGP)模型补偿标称模型的动力学误差。设计了一种新的在线GP模型更新框架,通过引入子GP模型对新数据进行预处理,提高数据质量,进而迭代更新主GP模型参数,以实现自适应动力学模型误差补偿。仿真结果表明,相比传统MPC和GP-MPC,所提方法在圆形轨迹下的模型精度和跟踪精度提升均超过16%,空间曲线轨迹下提升超过5%。 展开更多
关键词 四旋翼 模型预测控制 数据驱动 高斯过程回归 轨迹跟踪
原文传递
基于高斯过程的桥梁结构有限元模型修正方法
17
作者 田钦 陈勍苗 +1 位作者 郭新耀 姚凯 《南昌大学学报(工科版)》 2025年第1期49-55,共7页
桥梁健康监测是发现桥梁结构损伤的重要手段,而有限元模型修正是桥梁健康监测的重要研究内容。目前,基于有限元法的模型修正技术计算量大,实用性不强,并且工程结构受荷载变化、材料性能劣化的影响,会引起结构参数的不确定性。为提高计... 桥梁健康监测是发现桥梁结构损伤的重要手段,而有限元模型修正是桥梁健康监测的重要研究内容。目前,基于有限元法的模型修正技术计算量大,实用性不强,并且工程结构受荷载变化、材料性能劣化的影响,会引起结构参数的不确定性。为提高计算效率和考虑结构参数的不确定性,提出了一种基于高斯过程模型的桥梁结构有限元模型修正方法。以简支梁结构为例,采用Sobol序列采样结构的弹性模量、质量密度,然后将所采样本映射到对应的物理空间,代入有限元模型,计算出模型的前三阶频率,进而建立了高斯代理模型。采用高斯代理模型分析简支梁结构前三阶固有频率,修正了结构的弹性模量和质量密度,并且弹性模量和质量密度的修正值与有限元模型计算值之间的误差很小。证实了高斯过程模型可以替代复杂的有限元模型,达到模型参数修正的目的。 展开更多
关键词 桥梁结构 不确定性 健康监测 模型修正 高斯过程
在线阅读 下载PDF
基于多元宇宙优化算法的超声信号估计方法
18
作者 王大为 高新怡 +2 位作者 解郁欣 李尚璋 敖博 《现代电子技术》 北大核心 2025年第9期49-53,共5页
为解决超声无损检测中微弱超声检测信号回波渡越时间估计的难题,提出一种基于多元宇宙优化(MVO)算法的超声检测信号渡越时间参数估计方法。首先,通过构建超声信号的高斯卷积模型,将渡越时间参数估计的问题转化为函数优化问题;然后,运用... 为解决超声无损检测中微弱超声检测信号回波渡越时间估计的难题,提出一种基于多元宇宙优化(MVO)算法的超声检测信号渡越时间参数估计方法。首先,通过构建超声信号的高斯卷积模型,将渡越时间参数估计的问题转化为函数优化问题;然后,运用多元宇宙优化算法对目标函数进行求解,从而实现渡越时间参数的准确估计。仿真和实验结果表明,采用所提出的方法估计信噪比为-10dB的微弱超声检测信号参数时,均方误差和估计信噪比分别为0.0003和7.8241,该处理结果显著优于小波变换和经验模态分解方法,可实现对渡越时间参数的准确估计。 展开更多
关键词 多元宇宙优化算法 高斯卷积模型 超声信号处理 超声检测 余弦相似度 渡越时间
在线阅读 下载PDF
一种高效高精度小样本的流固耦合代理模型 被引量:1
19
作者 钱志浩 丁陈森 +4 位作者 许灵辰 郭朝阳 喻月 罗词金 刘谋斌 《力学学报》 北大核心 2025年第4期803-815,共13页
针对传统流固耦合数值模拟计算效率低、建模成本高的技术瓶颈,本研究使用了一种基于本征正交分解(proper orthogonal decomposition,POD)与高斯过程回归(Gaussian process,GP)的数据驱动降阶模型(reduced order model,ROM)实现了流固耦... 针对传统流固耦合数值模拟计算效率低、建模成本高的技术瓶颈,本研究使用了一种基于本征正交分解(proper orthogonal decomposition,POD)与高斯过程回归(Gaussian process,GP)的数据驱动降阶模型(reduced order model,ROM)实现了流固耦合问题的代理仿真.通过融合无网格粒子法对流固耦合问题的仿真结果,构建了高保真流场数据集,重点实现了高维流场特征提取与多物理场耦合响应预测两大关键问题,建立了流固耦合ROM.该模型基于POD方法建立流场本征模态空间,实现数百万维流场数据的低维特征表达(维度约简率可达99.8%),并结合GP非参数化建模框架,在仅数十个训练样本的条件下即实现了高精度预测.数值实验表明:在内插情况,模型对流场的平均预测误差在2%左右;当参数外推范围达5%时,最大相对误差仍保持在4.7%以内;即便在参数外推20%的严苛工况下,模型仍能保持定性可靠.效率测试表明:本ROM的计算耗时仅为传统SPH方法的10%左右.该方法可成功应用于:(1)不同密度比工况下的结构沉没过程动力学预测,其流固耦合核心特征捕捉误差在5%左右;(2)水下运动体尾迹场重构,表面波高预测与仿真结果的平均误差约为2%.研究成果为海洋流固耦合问题的分析提供了高效计算工具. 展开更多
关键词 流固耦合 降阶模型 代理模型 高斯过程 本征正交分解
在线阅读 下载PDF
考虑热源及材料不确定性的增材制造LPBF热传导模型贝叶斯修正方法
20
作者 宋静文 蒋志豪 +3 位作者 张治东 毕司峰 朱继宏 张卫红 《力学学报》 北大核心 2025年第12期2974-2988,共15页
金属增材制造过程数值模拟是揭示工艺参数-熔池动力学-成形质量内在关联、实现控形保性制备的关键技术.由于热传导等物理过程复杂且实验数据量有限,不可避免地存在各种不确定性来源,导致模型预测精度存疑.为提高热传导模型的预测精度,... 金属增材制造过程数值模拟是揭示工艺参数-熔池动力学-成形质量内在关联、实现控形保性制备的关键技术.由于热传导等物理过程复杂且实验数据量有限,不可避免地存在各种不确定性来源,导致模型预测精度存疑.为提高热传导模型的预测精度,充分量化模型参数不确定性,本文针对激光粉末床熔融(LPBF)工艺热传导过程的高保真仿真建模问题,发展热传导模型贝叶斯修正方法,基于熔池尺寸数据对热源及材料参数进行不确定性量化.此外,为解决模型修正过程计算代价较大的问题,进一步发展了自适应学习高斯过程回归模型训练方法,能够在保证计算精度的同时显著提高修正效率.最后,采用本文所提方法获得了不同实验观测数据集下的热源及材料参数修正结果,结果表明本文所发展的方法能够同时实现热源及材料参数不确定性的有效更新,打印功率和扫描速度对热传导模型参数不确定性具有显著影响.研究发现模型预测结果与实验值的偏差无法单独通过模型修正来解决,针对这一问题,进一步引入模型偏差,通过加入打印功率和扫描速度相关的模型偏差函数使得修正后的熔池深度预测精度显著提升. 展开更多
关键词 增材制造 贝叶斯更新 高斯过程模型 自适应学习
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部