A single-mode laser system with non-Gaussian and Gaussian noise is investigated. The stationary mean value and the normalized variance of the laser intensity are numerically calculated under the condition that the sta...A single-mode laser system with non-Gaussian and Gaussian noise is investigated. The stationary mean value and the normalized variance of the laser intensity are numerically calculated under the condition that the stationary probability distribution function (SPDF) is derived. The SPDF as a function of the laser intensity exhibits a maximum, The maximum becomes smaller with the increase of the correlation intensity or the non-Gaussian parameter, where the later is a measure of the deviation from the Gaussian characteristic. The maximum becomes larger as the correlation time increases. The laser intensity stationary mean value decreases with the increase of the correlation intensity or the non-Gaussian parameter while increases with the correlation time increasing. The laser intensity normalized variance increases with the increase of the correlation intensity or the non-Gaussian parameter while decreases as the correlation time increases.展开更多
This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half...This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.展开更多
文摘A single-mode laser system with non-Gaussian and Gaussian noise is investigated. The stationary mean value and the normalized variance of the laser intensity are numerically calculated under the condition that the stationary probability distribution function (SPDF) is derived. The SPDF as a function of the laser intensity exhibits a maximum, The maximum becomes smaller with the increase of the correlation intensity or the non-Gaussian parameter, where the later is a measure of the deviation from the Gaussian characteristic. The maximum becomes larger as the correlation time increases. The laser intensity stationary mean value decreases with the increase of the correlation intensity or the non-Gaussian parameter while increases with the correlation time increasing. The laser intensity normalized variance increases with the increase of the correlation intensity or the non-Gaussian parameter while decreases as the correlation time increases.
基金Project supported by Natural Science Foundation of the Department of Science & Technology of Fujian Province of China (GrantNo 2007F5040)
文摘This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.