期刊文献+
共找到195篇文章
< 1 2 10 >
每页显示 20 50 100
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
1
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 em algorithm gaussian mixture model K-Nearest NEIGHBOR K-MEANS algorithm INITIALIZATION
在线阅读 下载PDF
Gaussian mixture model clustering with completed likelihood minimum message length criterion 被引量:1
2
作者 曾洪 卢伟 宋爱国 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期43-47,共5页
An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the ... An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results. 展开更多
关键词 gaussian mixture model non-gaussian distribution model selection expectation-maximization algorithm completed likelihood minimum message length criterion
在线阅读 下载PDF
A multi-target tracking algorithm based on Gaussian mixture model 被引量:4
3
作者 SUN Lili CAO Yunhe +1 位作者 WU Wenhua LIU Yutao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期482-487,共6页
Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is ... Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 multiple-target tracking gaussian mixture model(GMM) data association expectation maximization(em)algorithm
在线阅读 下载PDF
An efficient approach for shadow detection based on Gaussian mixture model 被引量:2
4
作者 韩延祥 张志胜 +1 位作者 陈芳 陈恺 《Journal of Central South University》 SCIE EI CAS 2014年第4期1385-1395,共11页
An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and fore... An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and foreground object pixels was performed by using color invariant features. In the shadow model learning stage, instead of a single Gaussian distribution, it was assumed that the density function computed on the values of chromaticity difference or bright difference, can be modeled as a mixture of Gaussian consisting of two density functions. Meanwhile, the Gaussian parameter estimation was performed by using EM algorithm. The estimates were used to obtain shadow mask according to two constraints. Finally, experiments were carried out. The visual experiment results confirm the effectiveness of proposed method. Quantitative results in terms of the shadow detection rate and the shadow discrimination rate(the maximum values are 85.79% and 97.56%, respectively) show that the proposed approach achieves a satisfying result with post-processing step. 展开更多
关键词 shadow detection gaussian mixture model em algorithm
在线阅读 下载PDF
Improved dark channel image dehazing method based on Gaussian mixture model 被引量:1
5
作者 GUO Hongguang CHEN Yong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期53-60,共8页
To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing m... To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing method based on Gaussian mixture model is proposed.Firstly,we use the Gaussian mixture model to model the hazy image,and then use the expectation maximization(EM)algorithm to optimize the parameters,so that the hazy image can be divided into the sky region and the non-sky region.Secondly,the sky region is divided into a light haze region,a medium haze region and a heavy haze region according to the different dark channel values to estimate the transmission respectively.Thirdly,the restored image is obtained by combining the atmospheric scattering model.Finally,adaptive local tone mapping for high dynamic range images is used to adjust the brightness of the restored image.The experimental results show that the proposed method can effectively eliminate the color distortion in the sky region,and the restored image is clearer and has better visual effect. 展开更多
关键词 image processing image dehazing gaussian mixture model expectation maximization(em)algorithm dark channel theory
在线阅读 下载PDF
Asymptotic Comparison of Method of Moments Estimators and Maximum Likelihood Estimators of Parameters in Zero-Inflated Poisson Model
6
作者 G. Nanjundan T. Raveendra Naika 《Applied Mathematics》 2012年第6期610-616,共7页
This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estima... This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estimators (MLEs). The results of a modest simulation study are presented. 展开更多
关键词 ZERO-INFLATED POISSON model maximum likelihood and MOMENT ESTIMATORS em algorithm ASYMPTOTIC Relative Efficiency
在线阅读 下载PDF
Predicting Precipitation Events Using Gaussian Mixture Model
7
作者 Haitian Ling Kunping Zhu 《Journal of Data Analysis and Information Processing》 2017年第4期131-139,共9页
In this paper, a Gaussian mixture model (GMM) based classifier is described to tell whether precipitation events will happen on a certain day at a certain time from historical meteorological data. The classifier deals... In this paper, a Gaussian mixture model (GMM) based classifier is described to tell whether precipitation events will happen on a certain day at a certain time from historical meteorological data. The classifier deals with a two-class classification problem where one class represents precipitation events and the other represents non-precipitation events. The concept of ambiguity is introduced to represent cases where weather conditions between the two classes like drizzles, intermittent or overcast are more likely to happen. Six groups of experiments are carried out to evaluate the performance of the classifier using different configurations based on the observation data released by Shanghai Baoshan weather station. Specifically, a typical classification performance of about 75% accuracy, 30% precision and 80% recall is achieved for prediction tasks with a time span of 12 hours. 展开更多
关键词 gaussian mixture model CLASSIFICATION em algorithm PRECIPITATION EVENT
暂未订购
Semi-Supervised Classification based on Gaussian Mixture Model for remote imagery 被引量:2
8
作者 XIONG Biao1,ZHANG XiaoJun1 & JIANG WanShou1,2 1 State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China 2 State Key Laboratory of Remote Sensing Science,Beijing,China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第S1期85-90,共6页
Semi-Supervised Classification (SSC),which makes use of both labeled and unlabeled data to determine classification borders in feature space,has great advantages in extracting classification information from mass data... Semi-Supervised Classification (SSC),which makes use of both labeled and unlabeled data to determine classification borders in feature space,has great advantages in extracting classification information from mass data.In this paper,a novel SSC method based on Gaussian Mixture Model (GMM) is proposed,in which each class’s feature space is described by one GMM.Experiments show the proposed method can achieve high classification accuracy with small amount of labeled data.However,for the same accuracy,supervised classification methods such as Support Vector Machine,Object Oriented Classification,etc.should be provided with much more labeled data. 展开更多
关键词 RemOTE sensing image CLASSIFICATION SemI-SUPERVISED CLASSIFICATION gaussian mixture model em algorithms
原文传递
The restricted EM algorithm under linear inequalities in a linear model with missing data 被引量:1
9
作者 ZHENG Shurong, SHI Ningzhong & GUO Jianhua School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China Institute of Mathematics, Jilin University, Changchun 130012, China 《Science China Mathematics》 SCIE 2005年第6期819-828,共10页
This paper discusses the maximum likelihood estimate of β under linear inequalities A0β≥ a in a linear model with missing data, proposes the restricted EM algo rithm and proves the convergence.
关键词 em algorithm linear model maximum likelihood estimate MISSING data.
原文传递
求解多模概率分布Gamma混合模型的半EM算法
10
作者 陈佳琪 何玉林 +1 位作者 成英超 黄哲学 《计算机应用》 北大核心 2025年第7期2153-2161,共9页
期望最大化(EM)算法在混合模型参数估计中发挥着重要作用,然而现有的EM算法在求解Gamma混合模型(GaMM)参数时存在局限性,主要体现在因近似计算导致的低质量参数估计,以及由于大量数值计算造成的计算效率低下问题。为了克服这些局限,并... 期望最大化(EM)算法在混合模型参数估计中发挥着重要作用,然而现有的EM算法在求解Gamma混合模型(GaMM)参数时存在局限性,主要体现在因近似计算导致的低质量参数估计,以及由于大量数值计算造成的计算效率低下问题。为了克服这些局限,并充分利用数据的多模性质,提出一种半EM(Semi-EM)算法求解用于估计多模概率分布的GaMM。首先,通过聚类探测数据的空间分布特性,以初始化GaMM参数,进而更准确地刻画数据的多模性;其次,在EM算法框架的基础上,对于缺乏封闭更新表达式而导致的参数更新困难问题,采用自定义的启发式策略对GaMM形状参数进行更新,使它们朝着最大化对数似然值的方向逐步调整,同时以封闭形式更新其他参数。经过一系列具有说服力的实验,验证了Semi-EM算法的可行性、合理性和有效性。实验结果表明,Semi-EM算法在精确估计多模概率分布方面优于对比的4种算法,具有更低的误差指标以及更高的对数似然值,表明该算法能提供更准确的模型参数估计,从而更精确地刻画数据的多模性质。 展开更多
关键词 多模概率密度函数 Gamma混合模型 期望最大化算法 聚类 对数似然函数
在线阅读 下载PDF
An improved EM algorithm for remote sensing classification 被引量:5
11
作者 YANG HongLei PENG JunHuan +1 位作者 XIA BaiRu ZHANG DingXuan 《Chinese Science Bulletin》 SCIE EI CAS 2013年第9期1060-1071,共12页
The use of a general EM(expectation-maximization) algorithm in multi-spectral image classification is known to cause two problems:singularity of the variance-covariance matrix and sensitivity of randomly selected init... The use of a general EM(expectation-maximization) algorithm in multi-spectral image classification is known to cause two problems:singularity of the variance-covariance matrix and sensitivity of randomly selected initial values.The former causes computation failure;the latter produces unstable classification results.This paper proposes a modified approach to resolve these defects.First,a modification is proposed to determine reliable parameters for the EM algorithm based on a k-means algorithm with initial centers obtained from the density function of the first principal component,which avoids the selection of initial centers at random.A second modification uses the principal component transformation of the image to obtain a set of uncorrelated data.The number of principal components as the input of the EM algorithm is determined by the principal contribution rate.In this way,the modification can not only remove singularity but also weaken noise.Experimental results obtained from two sets of remote sensing images acquired by two different sensors confirm the validity of the proposed approach. 展开更多
关键词 em算法 遥感分类 K-MEANS算法 主成分变换 协方差矩阵 随机选择 多光谱图像 期望最大化
在线阅读 下载PDF
A skew–normal mixture of joint location, scale and skewness models 被引量:1
12
作者 LI Hui-qiong WU Liu-cang YI Jie-yi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第3期283-295,共13页
Normal mixture regression models are one of the most important statistical data analysis tools in a heterogeneous population. When the data set under consideration involves asymmetric outcomes, in the last two decades... Normal mixture regression models are one of the most important statistical data analysis tools in a heterogeneous population. When the data set under consideration involves asymmetric outcomes, in the last two decades, the skew normal distribution has been shown beneficial in dealing with asymmetric data in various theoretic and applied problems. In this paper, we propose and study a novel class of models: a skew-normal mixture of joint location, scale and skewness models to analyze the heteroscedastic skew-normal data coming from a heterogeneous population. The issues of maximum likelihood estimation are addressed. In particular, an Expectation-Maximization (EM) algorithm for estimating the model parameters is developed. Properties of the estimators of the regression coefficients are evaluated through Monte Carlo experiments. Results from the analysis of a real data set from the Body Mass Index (BMI) data are presented. 展开更多
关键词 mixture regression models mixture of joint location scale and skewness models em algorithm maximum likelihood estimation skew-normal mixtures
在线阅读 下载PDF
基于高斯混合模型及EM算法的建筑工程数据预警治理方法 被引量:1
13
作者 张静雯 耿天宝 《科学技术创新》 2024年第8期192-195,共4页
结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方... 结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方案,使该顶管工程顺利贯通。建筑工程行业在现代社会中发挥着重要的经济和社会作用,然而,它也伴随着诸多风险和不确定性。为了有效地管理和预测这些风险,本文提出了一种基于高斯混合模型(GMM)和期望最大化(EM)算法的数据预警治理方法。该方法旨在通过对建筑工程数据的建模和分析,提前识别潜在的问题和风险,从而改善工程项目的管理和决策。 展开更多
关键词 GMM高斯混合模型 em算法 数据预警治理 正态分布曲线 后验概率
在线阅读 下载PDF
基于GMM与参考光伏模型双层优化的台区分布式光伏发电功率分解方法
14
作者 王守相 魏孟迪 +2 位作者 赵倩宇 郭陆阳 陈海文 《高电压技术》 北大核心 2025年第7期3443-3454,共12页
提高配电台区分布式光伏的监测能力对配电系统安全运行、电力分配和需求响应等任务具有重要意义。然而,台区绝大部分用户侧的分布式光伏不具备直接量测条件,无法实现对台区光伏发电功率的准确计量。针对这类问题,提出一种基于高斯混合模... 提高配电台区分布式光伏的监测能力对配电系统安全运行、电力分配和需求响应等任务具有重要意义。然而,台区绝大部分用户侧的分布式光伏不具备直接量测条件,无法实现对台区光伏发电功率的准确计量。针对这类问题,提出一种基于高斯混合模型(Gaussian mixture model,GMM)与参考光伏模型的双层优化方法,通过使用台区总功率和少量参考光伏发电功率来识别并分解出台区光伏发电功率。首先,依据台区光伏出力特性,设计了权重动态时间规整(weighted dynamic time warping,WDTW)对台区总功率进行聚类,识别2类光伏发电状态下的台区总功率数据,实现对负荷用电功率数据的近似生成。然后,针对负荷用电功率的分布特征,设计了一种由多组高斯分布组成的GMM模型,实现对日夜间负荷用电功率联合分布的模拟。最后,基于负荷联合分布和参考光伏等值模型的构建,采用考虑极大似然估计的二次序列优化双层调优方法分解得到台区光伏发电功率。研究结果表明,与其他方法相比,所提模型在实际工况下具备更高的光伏发电功率分解精度。 展开更多
关键词 光伏发电功率分解 权重动态时间规整 高斯混合模型 参考光伏模型 极大似然估计 双层优化
原文传递
遥感图像最大似然分类方法的EM改进算法 被引量:86
15
作者 骆剑承 王钦敏 +2 位作者 马江洪 周成虎 梁怡 《测绘学报》 EI CSCD 北大核心 2002年第3期234-239,共6页
基于参数化密度分布模型的最大似然方法 (MLC)是遥感影像分类最常用手段之一 ,与其他非参数方法 (如神经网络 )相比较 ,它具有清晰的参数解释能力、易于与先验知识融合和算法简单而易于实施等优点。但是由于遥感信息的统计分布具有高度... 基于参数化密度分布模型的最大似然方法 (MLC)是遥感影像分类最常用手段之一 ,与其他非参数方法 (如神经网络 )相比较 ,它具有清晰的参数解释能力、易于与先验知识融合和算法简单而易于实施等优点。但是由于遥感信息的统计分布具有高度的复杂性和随机性 ,当特征空间中类别的分布比较离散而导致不能服从预先假设的分布 ,或者样本的选取不具有代表性 ,往往得到的分类结果会偏离实际情况。首先介绍了用基于有限混合密度理论的期望最大(EM)算法来作为最大似然函数 (MLC)参数估计的方法———EM MLC。该模型首先假设总体混合密度分布可被分解为有限个参数化的高斯密度分布 ,然后把具有先验知识的样本与随机选取的未知样本混合在一起 ,通过EM迭代计算来估计出各密度分布的最大似然函数的参数集 ,从而一定程度上避免了参数估计可能出现的偏离。最后 ,本文提出了基于EM MLC遥感影像分类的具体实施流程和应用示范 ,并与一般最大似然方法 (MLC)得到的分类结果进行了定性和定量的综合比较 ,认为EM 展开更多
关键词 遥感图像 混合模型 em算法 最大似然 神经网络
在线阅读 下载PDF
一种基于高斯混合模型的改进EM算法研究 被引量:11
16
作者 宋磊 郑宝忠 +5 位作者 张莹 闫丽 卫宏 刘建鹏 李涛 杨恒 《应用光学》 CAS CSCD 北大核心 2013年第6期985-989,共5页
针对传统EM算法存在估计参数不具有最优性,以及在参数估计中需要人工参与等问题,提出一种基于高斯混合模型的改进EM算法。采用无人工参与的无监督思想,获取高斯混合模型对直方图拟合的最优参数组合。实验表明,该算法不仅能够快速地估计... 针对传统EM算法存在估计参数不具有最优性,以及在参数估计中需要人工参与等问题,提出一种基于高斯混合模型的改进EM算法。采用无人工参与的无监督思想,获取高斯混合模型对直方图拟合的最优参数组合。实验表明,该算法不仅能够快速地估计模型参量,而且能够给出最优参数,并在图像增强中使细节更明显,对比度更适中。 展开更多
关键词 em算法 高斯混合模型 图像增强
在线阅读 下载PDF
基于对数-主成分变换的EM算法用于遥感影像分类 被引量:6
17
作者 杨红磊 彭军还 +1 位作者 李淑慧 师芸 《测绘学报》 EI CSCD 北大核心 2010年第4期378-382,403,共6页
提出对多光谱数据进行对数变换来凸显类型特征,然后进行主成分变换并根据主成分贡献率确定EM算法分类所需主成分数,消除方差协方差矩阵的奇异性,同时削弱噪声;对数变换后的第一主成分直方图充分反映类型信息,由此确定的初始类别标签作... 提出对多光谱数据进行对数变换来凸显类型特征,然后进行主成分变换并根据主成分贡献率确定EM算法分类所需主成分数,消除方差协方差矩阵的奇异性,同时削弱噪声;对数变换后的第一主成分直方图充分反映类型信息,由此确定的初始类别标签作为多个主成分EM分类算法所需初始值,避开随机选初值的敏感问题。实验证明,所提出的计算方案分类精度优于普通EM方法和传统的K-means方法。 展开更多
关键词 高斯混合模型 em算法 主成分变换 直方图
在线阅读 下载PDF
基于鲁棒高斯混合模型的加速EM算法研究 被引量:7
18
作者 邢长征 赵全颖 +1 位作者 王星 王伟 《计算机应用研究》 CSCD 北大核心 2017年第4期1042-1046,共5页
针对传统鲁棒高斯混合模型EM算法存在模型成分参数难以精确获取最优解以及收敛速度随样本数量的增加而快速降低等问题,提出了一种基于鲁棒高斯混合模型的加速EM算法。该算法采用隐含参量信息熵原理对高斯模型分量个数进行挑选,以及使用A... 针对传统鲁棒高斯混合模型EM算法存在模型成分参数难以精确获取最优解以及收敛速度随样本数量的增加而快速降低等问题,提出了一种基于鲁棒高斯混合模型的加速EM算法。该算法采用隐含参量信息熵原理对高斯模型分量个数进行挑选,以及使用Aitken加速方法减少算法的迭代次数,当接近最优解时,EM步长的变化极为缓慢,这时使用Broyden对称秩1校正公式进行校正,使算法快速收敛,从而能够在很少的迭代次数内精确获取高斯混合模型的模型成分数。该算法通过与传统鲁棒EM算法和无监督的EM算法的聚类结果进行比较,实验证明该算法对初始值的设定并不敏感(成分数c无须预先设定),并且能够降低算法运算时间,提高聚类模型成分数(类簇)的正确率。 展开更多
关键词 em算法 鲁棒 高斯混合模型 模型成分数 信息熵原理
在线阅读 下载PDF
基于EM和GMM相结合的自适应灰度图像分割算法 被引量:9
19
作者 罗胜 郑蓓蓉 叶忻泉 《光子学报》 EI CAS CSCD 北大核心 2009年第6期1581-1585,共5页
提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方... 提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方法的阈值进行GMM分割,最后合并图像的近似区域.实验数据表明,相比其它图像分割算法,以及固定阈值的传统EM算法,本算法的分割结果更为准确. 展开更多
关键词 图像分割 混合高斯模型 期望最大算法 自适应阈值
在线阅读 下载PDF
高斯混合模型聚类中EM算法及初始化的研究 被引量:54
20
作者 岳佳 王士同 《微计算机信息》 北大核心 2006年第11X期244-246,302,共4页
EM算法是参数估计的重要方法,其算法核心是根据已有的数据来迭代计算似然函数,使之收敛于某个最优值。EM算法收敛的优劣很大程度上取决于其初始参数。运用EM算法来实现高斯混合模型聚类,如何初始化EM参数便成为一个关键的问题。在比较... EM算法是参数估计的重要方法,其算法核心是根据已有的数据来迭代计算似然函数,使之收敛于某个最优值。EM算法收敛的优劣很大程度上取决于其初始参数。运用EM算法来实现高斯混合模型聚类,如何初始化EM参数便成为一个关键的问题。在比较其他的初始化方法的基础上,引入“binning”法来初始化EM。实验结果表明,应用binning法来初始化EM的高斯混合模型聚类优于其它传统的初始化方法。 展开更多
关键词 极大似然 高斯混合模 em算法 初始化 聚类分析
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部