期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Inequalities for the Gaussian hypergeometric function 被引量:1
1
作者 SONG YingQing ZHOU PeiGui CHU YuMing 《Science China Mathematics》 SCIE 2014年第11期2369-2380,共12页
we study the monotonicity of certain combinations of the Gaussian hypergeometric functions F(-1/2,1/2;1;1- xc) and F(-1/2- δ,1/2 + δ;1;1- xd) on(0,1) for given 0 < c 5d/6 < ∞ andδ∈(-1/2,1/2),and find the la... we study the monotonicity of certain combinations of the Gaussian hypergeometric functions F(-1/2,1/2;1;1- xc) and F(-1/2- δ,1/2 + δ;1;1- xd) on(0,1) for given 0 < c 5d/6 < ∞ andδ∈(-1/2,1/2),and find the largest value δ1 = δ1(c,d) such that inequality F(-1/2,1/2;1;1- xc) <F(-1/2- δ,1/2 + δ;1;1- xd) holds for all x ∈(0,1). Besides,we also consider the Gaussian hypergeometric functions F(a- 1- δ,1- a + δ;1;1- x3) and F(a- 1,1- a;1;1- x2) for given a ∈ [1/29,1) and δ∈(a- 1,a),and obtain the analogous results. 展开更多
关键词 gaussian hypergeometric function MONOTONICITY INEQUALITY
原文传递
Fekete-Szego Functional Problems for Certain Subclasses of Bi-Univalent Functions Involving the Hohlov Operator 被引量:1
2
作者 Pinhong LONG Huo TANG Wenshuai WANG 《Journal of Mathematical Research with Applications》 CSCD 2020年第1期1-12,共12页
In the paper the new subclasses■and■of the function class∑of bi-univalent functions involving the Hohlov operator are introduced and investigated.Then,the corresponding Fekete-Szeg functional inequalities as well a... In the paper the new subclasses■and■of the function class∑of bi-univalent functions involving the Hohlov operator are introduced and investigated.Then,the corresponding Fekete-Szeg functional inequalities as well as the bound estimates of the coefficients a2 and a3 are obtained.Furthermore,several consequences and connections to some of the earlier known results also are given. 展开更多
关键词 Fekete-Szego problem analytic function bi-univalent function gaussian hypergeometric function Hohlov operator
原文传递
Generalized Gr?tzsch ring function and generalized elliptic integrals 被引量:1
3
作者 MA Xiao-yan QIU Song-liang TU Guo-yan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第4期458-468,共11页
Abstract. In this paper, we study the quotient of hypergeometric functions μα (r) in the theory of Ramanujan's generalized modular equation for α ∈(0, 1/2]. Several new inequalities are given for this and rela... Abstract. In this paper, we study the quotient of hypergeometric functions μα (r) in the theory of Ramanujan's generalized modular equation for α ∈(0, 1/2]. Several new inequalities are given for this and related functions. Our main results complement and generalize some known results in the literature. 展开更多
关键词 gaussian hypergeometric function generalized GrStzsch ring function generalized elliptic func-tion.
在线阅读 下载PDF
ON THE BOUNDS OF THE PERIMETER OF AN ELLIPSE 被引量:1
4
作者 Tiehong ZHAO Miaokun WANG Yuming CHU 《Acta Mathematica Scientia》 SCIE CSCD 2022年第2期491-501,共11页
In this paper,we present new bounds for the perimeter of an ellipse in terms of harmonic,geometric,arithmetic and quadratic means;these new bounds represent improvements upon some previously known results.
关键词 gaussian hypergeometric function complete elliptic integral ELLIPSE PERIMETER
在线阅读 下载PDF
Ramanujan's cubic transformation and generalized modular equation
5
作者 WANG MiaoKun CHU YuMing SONG YingQing 《Science China Mathematics》 SCIE CSCD 2015年第11期2387-2404,共18页
We study the quotient of hypergeometric functions in the theory of Ramanujan's generalized modular equation for a ∈ (0, 1/2], and find an infinite product for- mula for μ1/3(r) by use of the properties of μ*a... We study the quotient of hypergeometric functions in the theory of Ramanujan's generalized modular equation for a ∈ (0, 1/2], and find an infinite product for- mula for μ1/3(r) by use of the properties of μ*a(r) and Ramanujan's cubic transformation. Besides, a new cubic transformation formula of hypergeometric function is given, which complements the Ramanujan's cubic transformation. 展开更多
关键词 gaussian hypergeometric function Ramanujan's cubic transformation generalized modular equa-tion infinite product modular function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部