针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首...针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首先,提取云服务器老化数据的统计特征指标,并采用支持向量回归(Support vector regression,SVR)对统计特征指标进行数据稀疏化处理,得到支持向量(Support vectors,SVs)序列数据;然后,建立基于密度聚类的高斯函数拟合(Gaussian function fitting,GFF)模型,对不同核函数下的支持向量序列数据进行老化曲线拟合,并采用Fréchet距离优化算法选取最优老化曲线;最后,基于最优老化曲线,评估系统到达老化阈值前的RUL,以预测系统何时发生老化.在OpenStack云服务器4个老化数据集上的实验结果表明,基于RUL和SVs-GFF的云服务器老化预测方法与传统预测方法相比,具有更高的预测精度和更快的收敛速度.展开更多
In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in paral...In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.展开更多
图像清晰度评价函数是聚焦恢复深度法(Depth from Focus,DFF)实现三维形貌测量的核心,直接决定了深度方向的测量精度。文中提出了一种基于高频方差熵的图像清晰度评价函数,与常用函数对比了清晰度比率、灵敏度因子两个定量指标,结果表...图像清晰度评价函数是聚焦恢复深度法(Depth from Focus,DFF)实现三维形貌测量的核心,直接决定了深度方向的测量精度。文中提出了一种基于高频方差熵的图像清晰度评价函数,与常用函数对比了清晰度比率、灵敏度因子两个定量指标,结果表明所提函数优于常用函数。通过对所提函数获得的清晰度评价曲线进行高斯曲线拟合,实现了深度方向聚焦位置的精确计算。对文中方法开展了聚焦重复性与标准台阶高度测量测试,重复性聚焦实验的测量标准差为2.82μm,台阶高度测量标准差为12μm,验证了文中方法用于高精度非接触三维测量的可行性。展开更多
文摘针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首先,提取云服务器老化数据的统计特征指标,并采用支持向量回归(Support vector regression,SVR)对统计特征指标进行数据稀疏化处理,得到支持向量(Support vectors,SVs)序列数据;然后,建立基于密度聚类的高斯函数拟合(Gaussian function fitting,GFF)模型,对不同核函数下的支持向量序列数据进行老化曲线拟合,并采用Fréchet距离优化算法选取最优老化曲线;最后,基于最优老化曲线,评估系统到达老化阈值前的RUL,以预测系统何时发生老化.在OpenStack云服务器4个老化数据集上的实验结果表明,基于RUL和SVs-GFF的云服务器老化预测方法与传统预测方法相比,具有更高的预测精度和更快的收敛速度.
基金Project(2009CB320603)supported by the National Basic Research Program of ChinaProject(IRT0712)supported by Program for Changjiang Scholars and Innovative Research Team in University+1 种基金Project(B504)supported by the Shanghai Leading Academic Discipline ProgramProject(61174118)supported by the National Natural Science Foundation of China
文摘In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.
文摘图像清晰度评价函数是聚焦恢复深度法(Depth from Focus,DFF)实现三维形貌测量的核心,直接决定了深度方向的测量精度。文中提出了一种基于高频方差熵的图像清晰度评价函数,与常用函数对比了清晰度比率、灵敏度因子两个定量指标,结果表明所提函数优于常用函数。通过对所提函数获得的清晰度评价曲线进行高斯曲线拟合,实现了深度方向聚焦位置的精确计算。对文中方法开展了聚焦重复性与标准台阶高度测量测试,重复性聚焦实验的测量标准差为2.82μm,台阶高度测量标准差为12μm,验证了文中方法用于高精度非接触三维测量的可行性。