Filtering is a recursive estimation of hidden states of a dynamic system from noisy measurements.Such problems appear in several branches of science and technology,ranging from target tracking to biomedical monitoring...Filtering is a recursive estimation of hidden states of a dynamic system from noisy measurements.Such problems appear in several branches of science and technology,ranging from target tracking to biomedical monitoring.A commonly practiced approach of filtering with nonlinear systems is Gaussian filtering.The early Gaussian filters used a derivative-based implementation,and suffered from several drawbacks,such as the smoothness requirements of system models and poor stability.A derivative-free numerical approximation-based Gaussian filter,named the unscented Kalman filter(UKF),was introduced in the nineties,which offered several advantages over the derivativebased Gaussian filters.Since the proposition of UKF,derivativefree Gaussian filtering has been a highly active research area.This paper reviews significant developments made under Gaussian filtering since the proposition of UKF.The review is particularly focused on three categories of developments:i)advancing the numerical approximation methods;ii)modifying the conventional Gaussian approach to further improve the filtering performance;and iii)constrained filtering to address the problem of discrete-time formulation of process dynamics.This review highlights the computational aspect of recent developments in all three categories.The performance of various filters are analyzed by simulating them with real-life target tracking problems.展开更多
An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notifica...An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notification systems, Automatic road enforcement, Collision avoidance systems, Automatic parking, Map database management, etc. Advance Driver Assists System (ADAS) belongs to ITS which provides alert or warning or information to the user during driving. The proposed method uses Gaussian filtering and Median filtering to remove noise in the image. Subsequently image subtraction is achieved by subtracting Median filtered image from Gaussian filtered image. The resultant image is converted to binary image and the regions are analyzed using connected component approach. The prior work on speed bump detection is achieved using sensors which are failed to detect speed bumps that are constructed with small height and the detection rate is affected due to erroneous identification. And the smartphone and accelerometer methodologies are not perfectly suitable for real time scenario due to GPS error, network overload, real-time delay, accuracy and battery running out. The proposed system goes very well for the roads which are constructed with proper painting irrespective of their dimension.展开更多
In this paper,the newly-derived maximum correntropy Kalman filter(MCKF)is re-derived from the M-estimation perspective,where the MCKF can be viewed as a special case of the M-estimations and the Gaussian kernel functi...In this paper,the newly-derived maximum correntropy Kalman filter(MCKF)is re-derived from the M-estimation perspective,where the MCKF can be viewed as a special case of the M-estimations and the Gaussian kernel function is a special case of many robust cost functions.Based on the derivation process,a unified form for the robust Gaussian filters(RGF)based on M-estimation is proposed to suppress the outliers and non-Gaussian noise in the measurement.The RGF provides a unified form for one Gaussian filter with different cost functions and a unified form for one robust filter with different approximating methods for the involved Gaussian integrals.Simulation results show that RGF with different weighting functions and different Gaussian integral approximation methods has robust antijamming performance.展开更多
This paper proposes a spatially denoising algorithm using filtering-based noise estimation for an image corrupted by Gaussian noise.The proposed algorithm consists of two stages:estimation and elimination of noise den...This paper proposes a spatially denoising algorithm using filtering-based noise estimation for an image corrupted by Gaussian noise.The proposed algorithm consists of two stages:estimation and elimination of noise density.To adaptively deal with variety of the noise amount,a noisy input image is firstly filtered by a lowpass filter.Standard deviation of the noise is computed from different images between the noisy input and its filtered image.In addition,a modified Gaussian noise removal filter based on the local statistics such as local weighted mean,local weighted activity and local maximum is used to control the degree of noise suppression.Experiments show the effectiveness of the proposed algorithm.展开更多
Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing ...Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution.展开更多
Adversarial attacks pose a significant threat to artificial intelligence systems by exposing them to vulnerabilities in deep learning models.Existing defense mechanisms often suffer drawbacks,such as the need for mode...Adversarial attacks pose a significant threat to artificial intelligence systems by exposing them to vulnerabilities in deep learning models.Existing defense mechanisms often suffer drawbacks,such as the need for model retraining,significant inference time overhead,and limited effectiveness against specific attack types.Achieving perfect defense against adversarial attacks remains elusive,emphasizing the importance of mitigation strategies.In this study,we propose a defense mechanism that applies random cropping and Gaussian filtering to input images to mitigate the impact of adversarial attacks.First,the image was randomly cropped to vary its dimensions and then placed at the center of a fixed 299299 space,with the remaining areas filled with zero padding.Subsequently,Gaussian×filtering with a 77 kernel and a standard deviation of two was applied using a convolution operation.Finally,the×smoothed image was fed into the classification model.The proposed defense method consistently appeared in the upperright region across all attack scenarios,demonstrating its ability to preserve classification performance on clean images while significantly mitigating adversarial attacks.This visualization confirms that the proposed method is effective and reliable for defending against adversarial perturbations.Moreover,the proposed method incurs minimal computational overhead,making it suitable for real-time applications.Furthermore,owing to its model-agnostic nature,the proposed method can be easily incorporated into various neural network architectures,serving as a fundamental module for adversarial defense strategies.展开更多
Currently, the approximation methods of the Gaussian filter by some other spline filters have been developed. However, thesc methods are only suitable for the study of one-dimensional filtering, when these methods are...Currently, the approximation methods of the Gaussian filter by some other spline filters have been developed. However, thesc methods are only suitable for the study of one-dimensional filtering, when these methods are used for three-dimensional filtering, it is found that a rounding error and quantization error would be passed to the next in every part. In this paper, a new and high-precision implementation approach for Gaussian filter is described, which is suitable for three-dimensional reference filtering. Based on the theory of generalized B-spline function and the variational principle, the transmission characteristics of a digital filter can be changed through the sensitivity of the parameters (t1, t2), and which can also reduce the rounding error and quantization error by the filter in a parallel form instead of the cascade form, Finally, the approximation filter of Gaussian filter is obtained. In order to verify the feasibility of the new algorithm, the reference extraction of the conventional methods are also used and compared. The experiments are conducted on the measured optical surface, and the results show that the total calculation by the new algorithm only requires 0.07 s for 480×480 data points; the amplitude deviation between the reference of the parallel form filter and the Gaussian filter is smaller; the new method is closer to the characteristic of the Gaussian filter through the analysis of three-dimensional roughness parameters, comparing with the cascade generalized B-spline approximating Gaussian. So the new algorithm is also efficient and accurate for the implementation of Gaussian filter in the application of surface roughness measurement.展开更多
Methods for feature detection in laser scanning data have been studied for decades ever since the emergence of the technology.However,it is still one of the unsolved problems in LiDAR data processing due to difficulty...Methods for feature detection in laser scanning data have been studied for decades ever since the emergence of the technology.However,it is still one of the unsolved problems in LiDAR data processing due to difficulty of texture and structure information extraction in unevenly sampled points.The paper analyzes the characteristics of Laplacian of Gaussian(LoG) Filter and its potential use for structure detection in LiDAR data.A feature detection method based on LoG filtering is presented and ex-perimented on the unstructured points.The method filters the elevation value(namely,z coordinate value) of each point by convo-lution using LoG kernel within its local area and derives patterns suggesting the existence of certain types of ground ob-jects/features.The experiments are carried on a point cloud dataset acquired from a neighborhood area.The results demonstrate patterns detected at different scales and the relationship between standard deviation that defines LoG kernel and neighborhood size,which specifies the local area that is analyzed.展开更多
The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cub...The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.展开更多
To adjust the samples of filtering adaptively,an improved Gaussian particle filter algorithm based on Kullback-Leibler divergence(KLD)-sampling(KLGPF)is proposed in this paper.During the process of sampling,the algori...To adjust the samples of filtering adaptively,an improved Gaussian particle filter algorithm based on Kullback-Leibler divergence(KLD)-sampling(KLGPF)is proposed in this paper.During the process of sampling,the algorithm calculates the KLD to adjust the size of the particle set between the discrete probability density function of particles and the true posterior probability density function.KLGPF has significant effect when the noise obeys Gaussian distribution and the statistical characteristics of noise change abruptly.Simulation results show that KLGPF could maintain a good estimation effect when the noise statistics changes abruptly.Compared with the particle filter algorithm using KLD-sampling(KLPF),the speed of KLGPF increases by 28%under the same conditions.展开更多
Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fi...Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.展开更多
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
The corrosion process of copper in thermal flow system was investigated through the experimental bench.According to surface variation of samples during corrosion process,the surface model of specimen was build up base...The corrosion process of copper in thermal flow system was investigated through the experimental bench.According to surface variation of samples during corrosion process,the surface model of specimen was build up based on Gaussian filter.The results show that the corrosion characterization of copper in thermal flow system is pitting corrosion.The morphology characterizations of metal corrosion process can be described using the proposed surface model.The generation and development of copper pitting process can be observed clearly.展开更多
NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PC...NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively.展开更多
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no...With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.展开更多
In content-based image retrieval(CBIR),primitive image signatures are critical because they represent the visual characteristics.Image signatures,which are algorithmically descriptive and accurately recognized visual ...In content-based image retrieval(CBIR),primitive image signatures are critical because they represent the visual characteristics.Image signatures,which are algorithmically descriptive and accurately recognized visual components,are used to appropriately index and retrieve comparable results.To differentiate an image in the category of qualifying contender,feature vectors must have image information's like colour,objects,shape,spatial viewpoints.Previous methods such as sketch-based image retrieval by salient contour(SBIR)and greedy learning of deep Boltzmann machine(GDBM)used spatial information to distinguish between image categories.This requires interest points and also feature analysis emerged image detection problems.Thus,a proposed model to overcome this issue and predict the repeating pattern as well as series of pixels that conclude similarity has been necessary.In this study,a technique called CBIR-similarity measure via artificial neural network interpolation(CBIR-SMANN)has been presented.By collecting datasets,the images are resized then subject to Gaussian filtering in the pre-processing stage,then by permitting them to the Hessian detector,the interesting points are gathered.Based on Skewness,mean,kurtosis and standard deviation features were extracted then given to ANN for interpolation.Interpolated results are stored in a database for retrieval.In the testing stage,the query image was inputted that is subjected to pre-processing,and feature extraction was then fed to the similarity measurement function.Thus,ANN helps to get similar images from the database.CBIR-SMANN have been implemented in the python tool and then evaluated for its performance.Results show that CBIR-SMANN exhibited a high recall value of 78%with a minimum retrieval time of 980 ms.This showed the supremacy of the proposed model was comparatively greater than the previous ones.展开更多
This paper proposes an improved Gaussian particle filter integratingthe Artificial Fish School Algorithm to optimise the measured values to improve the overall estimation accuracy of the system.Meanwhile,it also solve...This paper proposes an improved Gaussian particle filter integratingthe Artificial Fish School Algorithm to optimise the measured values to improve the overall estimation accuracy of the system.Meanwhile,it also solves the problems of susceptibility to interference and insufficient estimation accuracy in nonlinear systems.Furthermore,since the calculation time of the fusion algorithm increases,in order to ensure the speed of state estimation,the linear transformation of standard particle swarm is used to replace the particle sampling link of Gaussian particle filter.Simulation results show that the calculation speed of a fast Gaussian Particle Filter based on the Artificial Fish School Algorithm is 21.7%faster than the Particle Filter based on the Artificial Fish School Algorithm.Compared with Particle Filter,Gaussian particle filter,and the Artificial Fish School Algorithm,the proposed algorithm has a higher accuracy.展开更多
The sense of being within a three-dimensional (3D) space and interacting with virtual 3D objects in a computer-generated virtual environment (VE) often requires essential image, vision and sensor signal processing...The sense of being within a three-dimensional (3D) space and interacting with virtual 3D objects in a computer-generated virtual environment (VE) often requires essential image, vision and sensor signal processing techniques such as differentiating and denoising. This paper describes novel implementations of the Gaussian filtering for characteristic signal extraction and waveletbased image denoising algorithms that run on the graphics processing unit (GPU). While significant acceleration over standard CPU implementations is obtained through exploiting data parallelism provided by the modern programmable graphics hardware, the CPU can be freed up to run other computations more efficiently such as artificial intelligence (AI) and physics. The proposed GPU-based Gaussian filtering can extract surface information from a real object and provide its material features for rendering and illumination. The wavelet-based signal denoising for large size digital images realized in this project provided better realism for VE visualization without sacrificing real-time and interactive performances of an application.展开更多
We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals wi...We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals with synchronized transformed patterns of Hadamard bases that are actually projected onto the digital micromirror device.Each transform pattern is obtained through the inverse Fourier transform of the pattern acquired by Gaussian filtering of each Hadamard basis in the frequency domain.The proposed scheme is based on a typical SPI experimental setup and does not add any hardware complexity,enabling the transformation of Hadamard matrices and image reconstruction through data processing alone.Therefore,this approach could be considered as an alternative option for achieving fast SPI in a diffraction-limited imaging system,without the need for additional hardware.展开更多
High performance hardware architecture for depth measurement by using binocular-camera is proposed.In the system,at first,video streams of the target are captured by left and right charge-coupled device(CCD)cameras to...High performance hardware architecture for depth measurement by using binocular-camera is proposed.In the system,at first,video streams of the target are captured by left and right charge-coupled device(CCD)cameras to obtain an image including the target.Then,two different images with two different view points are obtained,and they are used in calculating the position deviation of the image's pixels based on triangular measurement.Finally,the three-dimensional coordinate of the object is reconstructed.All the video data is processed by using field-programmable gate array(FPGA)in real-time.Hardware implementation speeds up the performance and reduces the power,thus,this hardware architecture can be applied in the portable environment.展开更多
文摘Filtering is a recursive estimation of hidden states of a dynamic system from noisy measurements.Such problems appear in several branches of science and technology,ranging from target tracking to biomedical monitoring.A commonly practiced approach of filtering with nonlinear systems is Gaussian filtering.The early Gaussian filters used a derivative-based implementation,and suffered from several drawbacks,such as the smoothness requirements of system models and poor stability.A derivative-free numerical approximation-based Gaussian filter,named the unscented Kalman filter(UKF),was introduced in the nineties,which offered several advantages over the derivativebased Gaussian filters.Since the proposition of UKF,derivativefree Gaussian filtering has been a highly active research area.This paper reviews significant developments made under Gaussian filtering since the proposition of UKF.The review is particularly focused on three categories of developments:i)advancing the numerical approximation methods;ii)modifying the conventional Gaussian approach to further improve the filtering performance;and iii)constrained filtering to address the problem of discrete-time formulation of process dynamics.This review highlights the computational aspect of recent developments in all three categories.The performance of various filters are analyzed by simulating them with real-life target tracking problems.
文摘An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notification systems, Automatic road enforcement, Collision avoidance systems, Automatic parking, Map database management, etc. Advance Driver Assists System (ADAS) belongs to ITS which provides alert or warning or information to the user during driving. The proposed method uses Gaussian filtering and Median filtering to remove noise in the image. Subsequently image subtraction is achieved by subtracting Median filtered image from Gaussian filtered image. The resultant image is converted to binary image and the regions are analyzed using connected component approach. The prior work on speed bump detection is achieved using sensors which are failed to detect speed bumps that are constructed with small height and the detection rate is affected due to erroneous identification. And the smartphone and accelerometer methodologies are not perfectly suitable for real time scenario due to GPS error, network overload, real-time delay, accuracy and battery running out. The proposed system goes very well for the roads which are constructed with proper painting irrespective of their dimension.
基金supported by the Basic Science Center Program of the National Natural Science Foundation of China(62388101)the National Natural Science Foundation of China(61873275).
文摘In this paper,the newly-derived maximum correntropy Kalman filter(MCKF)is re-derived from the M-estimation perspective,where the MCKF can be viewed as a special case of the M-estimations and the Gaussian kernel function is a special case of many robust cost functions.Based on the derivation process,a unified form for the robust Gaussian filters(RGF)based on M-estimation is proposed to suppress the outliers and non-Gaussian noise in the measurement.The RGF provides a unified form for one Gaussian filter with different cost functions and a unified form for one robust filter with different approximating methods for the involved Gaussian integrals.Simulation results show that RGF with different weighting functions and different Gaussian integral approximation methods has robust antijamming performance.
基金supported by the Korea Science and Engineering Foundation(KOSEF) grant fund by the Korea Govern-ment(MEST)(No.2011-0000148)the Ministry of Knowledge Economy,Korea under the Infor mation Technology Research Center support programsupervised by the National IT Industry Promotion Agency(NIPA-2011-C1090-1121-0010)
文摘This paper proposes a spatially denoising algorithm using filtering-based noise estimation for an image corrupted by Gaussian noise.The proposed algorithm consists of two stages:estimation and elimination of noise density.To adaptively deal with variety of the noise amount,a noisy input image is firstly filtered by a lowpass filter.Standard deviation of the noise is computed from different images between the noisy input and its filtered image.In addition,a modified Gaussian noise removal filter based on the local statistics such as local weighted mean,local weighted activity and local maximum is used to control the degree of noise suppression.Experiments show the effectiveness of the proposed algorithm.
基金supported by the Funding of Jiangsu University of Science and Technology,under the grant number:1132921208.
文摘Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution.
基金supported by the Glocal University 30 Project Fund of Gyeongsang National University in 2025.
文摘Adversarial attacks pose a significant threat to artificial intelligence systems by exposing them to vulnerabilities in deep learning models.Existing defense mechanisms often suffer drawbacks,such as the need for model retraining,significant inference time overhead,and limited effectiveness against specific attack types.Achieving perfect defense against adversarial attacks remains elusive,emphasizing the importance of mitigation strategies.In this study,we propose a defense mechanism that applies random cropping and Gaussian filtering to input images to mitigate the impact of adversarial attacks.First,the image was randomly cropped to vary its dimensions and then placed at the center of a fixed 299299 space,with the remaining areas filled with zero padding.Subsequently,Gaussian×filtering with a 77 kernel and a standard deviation of two was applied using a convolution operation.Finally,the×smoothed image was fed into the classification model.The proposed defense method consistently appeared in the upperright region across all attack scenarios,demonstrating its ability to preserve classification performance on clean images while significantly mitigating adversarial attacks.This visualization confirms that the proposed method is effective and reliable for defending against adversarial perturbations.Moreover,the proposed method incurs minimal computational overhead,making it suitable for real-time applications.Furthermore,owing to its model-agnostic nature,the proposed method can be easily incorporated into various neural network architectures,serving as a fundamental module for adversarial defense strategies.
基金Supported by National Natural Science Foundation of China(Grant Nos51175085,51375094)Fujian Provincial Education Department Foundation of China(Grant No.JA13059)+1 种基金Open Fund of State Key Laboratory of Tribology of Tsinghua University,China(Grant No.SKLTKF13B02)Fuzhou Science and Technology plan Fund of China(Grant No.2014-G-74)
文摘Currently, the approximation methods of the Gaussian filter by some other spline filters have been developed. However, thesc methods are only suitable for the study of one-dimensional filtering, when these methods are used for three-dimensional filtering, it is found that a rounding error and quantization error would be passed to the next in every part. In this paper, a new and high-precision implementation approach for Gaussian filter is described, which is suitable for three-dimensional reference filtering. Based on the theory of generalized B-spline function and the variational principle, the transmission characteristics of a digital filter can be changed through the sensitivity of the parameters (t1, t2), and which can also reduce the rounding error and quantization error by the filter in a parallel form instead of the cascade form, Finally, the approximation filter of Gaussian filter is obtained. In order to verify the feasibility of the new algorithm, the reference extraction of the conventional methods are also used and compared. The experiments are conducted on the measured optical surface, and the results show that the total calculation by the new algorithm only requires 0.07 s for 480×480 data points; the amplitude deviation between the reference of the parallel form filter and the Gaussian filter is smaller; the new method is closer to the characteristic of the Gaussian filter through the analysis of three-dimensional roughness parameters, comparing with the cascade generalized B-spline approximating Gaussian. So the new algorithm is also efficient and accurate for the implementation of Gaussian filter in the application of surface roughness measurement.
基金Supported by the National Natural Science Foundation of China (No.40871211)
文摘Methods for feature detection in laser scanning data have been studied for decades ever since the emergence of the technology.However,it is still one of the unsolved problems in LiDAR data processing due to difficulty of texture and structure information extraction in unevenly sampled points.The paper analyzes the characteristics of Laplacian of Gaussian(LoG) Filter and its potential use for structure detection in LiDAR data.A feature detection method based on LoG filtering is presented and ex-perimented on the unstructured points.The method filters the elevation value(namely,z coordinate value) of each point by convo-lution using LoG kernel within its local area and derives patterns suggesting the existence of certain types of ground ob-jects/features.The experiments are carried on a point cloud dataset acquired from a neighborhood area.The results demonstrate patterns detected at different scales and the relationship between standard deviation that defines LoG kernel and neighborhood size,which specifies the local area that is analyzed.
基金supported by the National Natural Science Foundation of China(No. 61032001)Shandong Provincial Natural Science Foundation of China (No. ZR2012FQ004)
文摘The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.
基金the China Postdoctoral Science Foundation(No.171980)the National Natural Science Foundation of China(Nos.61973160,51505221)Key Laboratory Fund of Science and Technology on Communication Networks(No.6142104180114).
文摘To adjust the samples of filtering adaptively,an improved Gaussian particle filter algorithm based on Kullback-Leibler divergence(KLD)-sampling(KLGPF)is proposed in this paper.During the process of sampling,the algorithm calculates the KLD to adjust the size of the particle set between the discrete probability density function of particles and the true posterior probability density function.KLGPF has significant effect when the noise obeys Gaussian distribution and the statistical characteristics of noise change abruptly.Simulation results show that KLGPF could maintain a good estimation effect when the noise statistics changes abruptly.Compared with the particle filter algorithm using KLD-sampling(KLPF),the speed of KLGPF increases by 28%under the same conditions.
基金Project (No. 2006J0017) supported by the Natural Science Foundation of Fujian Province, China
文摘Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Project(2008DFR60340)supported by the International Science and Technology Cooperation of ChinaProject(2008087)supported by Scientific Technological Project of Weihai,China。
文摘The corrosion process of copper in thermal flow system was investigated through the experimental bench.According to surface variation of samples during corrosion process,the surface model of specimen was build up based on Gaussian filter.The results show that the corrosion characterization of copper in thermal flow system is pitting corrosion.The morphology characterizations of metal corrosion process can be described using the proposed surface model.The generation and development of copper pitting process can be observed clearly.
基金Supported by the National Natural Science Foundation of China (No. 60776795,60736043,60902031,and 60805012)the Research Fund for the Doctoral Program of Higher Education of China (No. 200807010004,20070701023)the Fundamental Research Funds for the Central Universities of China (No. JY10000902028)
文摘NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively.
基金supported by the National Natural Science Foundation of China(6100115361271415+4 种基金6140149961531015)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)
文摘With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.
文摘In content-based image retrieval(CBIR),primitive image signatures are critical because they represent the visual characteristics.Image signatures,which are algorithmically descriptive and accurately recognized visual components,are used to appropriately index and retrieve comparable results.To differentiate an image in the category of qualifying contender,feature vectors must have image information's like colour,objects,shape,spatial viewpoints.Previous methods such as sketch-based image retrieval by salient contour(SBIR)and greedy learning of deep Boltzmann machine(GDBM)used spatial information to distinguish between image categories.This requires interest points and also feature analysis emerged image detection problems.Thus,a proposed model to overcome this issue and predict the repeating pattern as well as series of pixels that conclude similarity has been necessary.In this study,a technique called CBIR-similarity measure via artificial neural network interpolation(CBIR-SMANN)has been presented.By collecting datasets,the images are resized then subject to Gaussian filtering in the pre-processing stage,then by permitting them to the Hessian detector,the interesting points are gathered.Based on Skewness,mean,kurtosis and standard deviation features were extracted then given to ANN for interpolation.Interpolated results are stored in a database for retrieval.In the testing stage,the query image was inputted that is subjected to pre-processing,and feature extraction was then fed to the similarity measurement function.Thus,ANN helps to get similar images from the database.CBIR-SMANN have been implemented in the python tool and then evaluated for its performance.Results show that CBIR-SMANN exhibited a high recall value of 78%with a minimum retrieval time of 980 ms.This showed the supremacy of the proposed model was comparatively greater than the previous ones.
基金supported by Aeronautical Science Founda-tion of China[grant numbers 2018ZC52037,2017ZC52017]and National Natural Science Foundation of China[grant number 51505221].
文摘This paper proposes an improved Gaussian particle filter integratingthe Artificial Fish School Algorithm to optimise the measured values to improve the overall estimation accuracy of the system.Meanwhile,it also solves the problems of susceptibility to interference and insufficient estimation accuracy in nonlinear systems.Furthermore,since the calculation time of the fusion algorithm increases,in order to ensure the speed of state estimation,the linear transformation of standard particle swarm is used to replace the particle sampling link of Gaussian particle filter.Simulation results show that the calculation speed of a fast Gaussian Particle Filter based on the Artificial Fish School Algorithm is 21.7%faster than the Particle Filter based on the Artificial Fish School Algorithm.Compared with Particle Filter,Gaussian particle filter,and the Artificial Fish School Algorithm,the proposed algorithm has a higher accuracy.
基金supported by Research Funding of Huddersfield University:GPU-based High Performance Computing for Signal Processing (No. 1008/REU117)
文摘The sense of being within a three-dimensional (3D) space and interacting with virtual 3D objects in a computer-generated virtual environment (VE) often requires essential image, vision and sensor signal processing techniques such as differentiating and denoising. This paper describes novel implementations of the Gaussian filtering for characteristic signal extraction and waveletbased image denoising algorithms that run on the graphics processing unit (GPU). While significant acceleration over standard CPU implementations is obtained through exploiting data parallelism provided by the modern programmable graphics hardware, the CPU can be freed up to run other computations more efficiently such as artificial intelligence (AI) and physics. The proposed GPU-based Gaussian filtering can extract surface information from a real object and provide its material features for rendering and illumination. The wavelet-based signal denoising for large size digital images realized in this project provided better realism for VE visualization without sacrificing real-time and interactive performances of an application.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB0504302)。
文摘We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals with synchronized transformed patterns of Hadamard bases that are actually projected onto the digital micromirror device.Each transform pattern is obtained through the inverse Fourier transform of the pattern acquired by Gaussian filtering of each Hadamard basis in the frequency domain.The proposed scheme is based on a typical SPI experimental setup and does not add any hardware complexity,enabling the transformation of Hadamard matrices and image reconstruction through data processing alone.Therefore,this approach could be considered as an alternative option for achieving fast SPI in a diffraction-limited imaging system,without the need for additional hardware.
文摘High performance hardware architecture for depth measurement by using binocular-camera is proposed.In the system,at first,video streams of the target are captured by left and right charge-coupled device(CCD)cameras to obtain an image including the target.Then,two different images with two different view points are obtained,and they are used in calculating the position deviation of the image's pixels based on triangular measurement.Finally,the three-dimensional coordinate of the object is reconstructed.All the video data is processed by using field-programmable gate array(FPGA)in real-time.Hardware implementation speeds up the performance and reduces the power,thus,this hardware architecture can be applied in the portable environment.