期刊文献+
共找到2,564篇文章
< 1 2 129 >
每页显示 20 50 100
Physics-Informed Gaussian Process Regression with Bayesian Optimization for Laser Welding Quality Control in Coaxial Laser Diodes
1
作者 Ziyang Wang Lian Duan +2 位作者 Lei Kuang Haibo Zhou Ji’an Duan 《Computers, Materials & Continua》 2025年第8期2587-2604,共18页
The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise co... The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise control of process parameters to suppress optical power loss.However,the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise.To address this challenge,a physics-informed(PI)and data-driven collaboration approach for welding parameter optimization is proposed.First,thermal-fluid-solid coupling finite element method(FEM)was employed to quantify the sensitivity of welding parameters to physical characteristics,including residual stress.This analysis facilitated the identification of critical factors contributing to optical power loss.Subsequently,a Gaussian process regression(GPR)model incorporating finite element simulation prior knowledge was constructed based on the selected features.By introducing physics-informed kernel(PIK)functions,stress distribution patterns were embedded into the prediction model,achieving high-precision optical power loss prediction.Finally,a Bayesian optimization(BO)algorithm with an adaptive sampling strategy was implemented for efficient parameter space exploration.Experimental results demonstrate that the proposedmethod effectively establishes explicit physical correlations between welding parameters and optical power loss.The optimized welding parameters reduced optical power loss by 34.1%,providing theoretical guidance and technical support for reliable CLD packaging. 展开更多
关键词 Coaxial laser diodes laser welding physics-informed gaussian process regression Bayesian optimization
在线阅读 下载PDF
A novel GNSS imaging method through velocity uncertainty based on Gaussian process regression and its evaluation
2
作者 Jie Ding Xiaohui Zhou +3 位作者 Hua Chen Xingyu Zhou Linyu He Weiping Jiang 《Geodesy and Geodynamics》 2025年第5期569-578,共10页
Global Navigation Satellite System(GNSS)imaging method(GIM)has been successfully applied to global regions to investigate vertical land motion(VLM)of the Earth's surface.GNSS images derived from conventional GIM m... Global Navigation Satellite System(GNSS)imaging method(GIM)has been successfully applied to global regions to investigate vertical land motion(VLM)of the Earth's surface.GNSS images derived from conventional GIM method may present fragmented patches and encounter problems caused by excessive smoothing of velocity peaks,leading to difficulty in short-wavelength deformation detection and improper geophysical interpretation.Therefore,we propose a novel GNSS imaging method based on Gaussian process regression with velocity uncertainty considered(GPR-VU).Gaussian processing regression is introduced to describe the spatial relationship between neighboring site pairs as a priori weights and then reweight velocities by known station uncertainties,converting the discrete velocity field to a continuous one.The GPR-VU method is applied to reconstruct VLM images in the southwestern United States and the eastern Qinghai-Xizang Plateau,China,using the GNSS position time series in vertical direction.Compared to the traditional GIM method,the root-mean-square(RMS)and overall accuracy of the confusion matrix of the GPR-VU method increase by 5.0%and 14.0%from the 1°×1°checkerboard test in the southwestern United States.Similarly,the RMS and overall accuracy increase by 33.7%and 15.8%from the 6°×6°checkerboard test in the eastern Qinghai-Xizang Plateau.These checkerboard tests validate the capability to effectively capture the spatiotemporal variations characteristics of VLM and show that this algorithm outperforms the sparsely distributed network in the Qinghai-Xizang Plateau.The images from the GPR-VU method using real data in both regions show significant subsidence around Lassen Volcanic in northern California within a 30 km radius,slight uplift in the northern Sichuan Basin,and subsidence in its central and southern sections.These results further qualitatively illustrate consistency with previous findings.The GPR-VU method outperforms in diminishing the effect by fragmented patches,excessive smoothing of velocity peaks,and detecting potential short-wavelength deformations. 展开更多
关键词 Vertical land motion GNSS image gaussian process regression Velocity uncertainty
原文传递
Reliable calculations of nuclear binding energies by the Gaussian process of machine learning 被引量:1
3
作者 Zi-Yi Yuan Dong Bai +1 位作者 Zhen Wang Zhong-Zhou Ren 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期130-144,共15页
Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the ... Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the nuclear binding energies are modeled directly using a machine-learning method called the Gaussian process. First, the binding energies for 2238 nuclei with Z > 20 and N > 20 are calculated using the Gaussian process in a physically motivated feature space, yielding an average deviation of 0.046 MeV and a standard deviation of 0.066 MeV. The results show the good learning ability of the Gaussian process in the studies of binding energies. Then, the predictive power of the Gaussian process is studied by calculating the binding energies for 108 nuclei newly included in AME2020. The theoretical results are in good agreement with the experimental data, reflecting the good predictive power of the Gaussian process. Moreover, the α-decay energies for 1169 nuclei with 50 ≤ Z ≤ 110 are derived from the theoretical binding energies calculated using the Gaussian process. The average deviation and the standard deviation are, respectively, 0.047 MeV and 0.070 MeV. Noticeably, the calculated α-decay energies for the two new isotopes ^ (204 )Ac(Huang et al. Phys Lett B 834, 137484(2022)) and ^ (207) Th(Yang et al. Phys Rev C 105, L051302(2022)) agree well with the latest experimental data. These results demonstrate that the Gaussian process is reliable for the calculations of nuclear binding energies. Finally, the α-decay properties of some unknown actinide nuclei are predicted using the Gaussian process. The predicted results can be useful guides for future research on binding energies and α-decay properties. 展开更多
关键词 Nuclear binding energies DECAY Machine learning gaussian process
在线阅读 下载PDF
Robotic compliant assembly for complex-shaped composite aircraft frame based on Gaussian process considering uncertainties 被引量:1
4
作者 Yingke YANG Dongsheng LI +3 位作者 Yunong ZHAI Jie WANG Lei XUE Zhiyong YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期471-482,共12页
Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite... Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite frame in a robotic assembly of the aircraft composite fuselage panel can hardly be controlled due to the multi-surface variable contact stiffness caused by compliance and complex shape with multiple mating surfaces.The paper proposes a robotic assembly system for the aircraft composite fuselage frame with a compliant contact force control strategy using the Gaussian process surrogate model.First,a robotic assembly system is introduced,and the global coordinate system transformation model is built.Then,a compliant force control architecture is designed to generate the desired output force.Subsequently,a Gaussian process surrogate model with uncertainties is utilized to model the complicated relationship between the robot’s output force and the normal contact force acting on the mating surface of the composite frame.Furthermore,an optimal contact force control strategy is implemented to improve the contact quality.Finally,an experiment demonstrates that the proposed methodology can ensure that the contact force on each surface is within the limit of the engineering specification and uniformly distributed,improving the quality compared to the traditional assembly process. 展开更多
关键词 AIRCRAFT Composite structure assembly Multi-surface contact Compliant control gaussian process Uncertainty
原文传递
Dynamic Gaussian process regression for spatio-temporal data based on local clustering 被引量:1
5
作者 Binglin WANG Liang YAN +3 位作者 Qi RONG Jiangtao CHEN Pengfei SHEN Xiaojun DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期245-257,共13页
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models bas... This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions.The proposed Dynamic Gaussian Process Regression(DGPR)consists of a sequence of local surrogate models related to each other.In DGPR,the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns,where the temporal information is used as the prior information for training the spatial-surrogate model.The DGPR is robust and especially suitable for the loosely coupled model structure,also allowing for parallel computation.The numerical results of the test function show the effectiveness of DGPR.Furthermore,the shock tube problem is successfully approximated under different phenomenon complexity. 展开更多
关键词 gaussian processes Surrogate model Spatio-temporal systems Shock tube problem Local modeling strategy Time-based spatial clustering
原文传递
State of health prediction for lithium-ion batteries based on ensemble Gaussian process regression 被引量:2
6
作者 HUI Zhouli WANG Ruijie +1 位作者 FENG Nana YANG Ming 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期397-407,共11页
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ... The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability. 展开更多
关键词 lithium-ion batteryies(LIBs) ensemble gaussian process regression(EgpR) state of health(SOH) health indicators(HIs) gannet optimization algorithm(GOA)
在线阅读 下载PDF
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
7
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
在线阅读 下载PDF
基于DOD-LN-GPR模型的锂离子电池SOH估计方法 被引量:1
8
作者 黄佳茵 白俊琦 贤燕华 《太阳能学报》 北大核心 2025年第2期60-69,共10页
针对锂离子电池健康状态(SOH)的估计中预测精度不高、健康特征输入冗余、数据预处理繁琐的问题,提出一种基于放电深度(DOD)的改进高斯过程回归SOH预测模型。在锂离子电池的放电曲线中,计算出锂离子电池的放电深度,并将其作为唯一的健康... 针对锂离子电池健康状态(SOH)的估计中预测精度不高、健康特征输入冗余、数据预处理繁琐的问题,提出一种基于放电深度(DOD)的改进高斯过程回归SOH预测模型。在锂离子电池的放电曲线中,计算出锂离子电池的放电深度,并将其作为唯一的健康特征。同时改进传统的高斯过程回归(GPR)算法,利用线性(LIN)和神经网络(NN)的组合核函数(LIN+NN)拟合锂离子电池容量全局衰退和局部波动的趋势,从而建立DOD-LN-GPR锂离子电池SOH估计模型。在NASA数据集中,首先进行不同核函数的实验比对,验证所提组合核函数预测精度的优势;其次,通过减小训练集与测试集比例,证明所提估计方法在少量训练样本上仍能有较好的预测效果;最后,将所提DOD-LN-GPR模型在不同训练集下与其他SOH估计模型进行对比,结果表明该模型具有较好的精度和鲁棒性。 展开更多
关键词 锂离子电池 状态估计 电池管理系统 高斯过程回归 放电深度
原文传递
Comparison of Results of Different GPS Post-processing Software
9
作者 Dapeng SHI 《Asian Agricultural Research》 2024年第6期33-35,共3页
In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data... In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data of the GPS control network of Guanyinge Reservoir,and compares the results obtained by several kinds of software.According to the test results,the reasons for the accuracy differences between different software are analyzed,and the optimal results are obtained in the analysis and comparison.The purpose of this paper is to provide useful reference for GPS software users to process data. 展开更多
关键词 gpS Data processing POINT POSITION PRECISION
在线阅读 下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
10
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization gaussian process Regression(gpR) Conditional Likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
在线阅读 下载PDF
InSAR与GPS融合技术在变形监测中的应用研究 被引量:1
11
作者 辛明 王岑 吕汉杰 《高科技与产业化》 2025年第2期29-31,共3页
本研究旨在探讨InSAR与GPS融合技术在变形监测中的应用。研究内容包括详细分析InSAR与GPS两种技术的基本原理、优势与局限性,以及它们在变形监测中的互补性。研究方法采用数据融合模型,结合案例分析,进行数据采集、融合处理与结果分析,... 本研究旨在探讨InSAR与GPS融合技术在变形监测中的应用。研究内容包括详细分析InSAR与GPS两种技术的基本原理、优势与局限性,以及它们在变形监测中的互补性。研究方法采用数据融合模型,结合案例分析,进行数据采集、融合处理与结果分析,并对应用效果进行精度、效率与实用性评估。研究结论表明,InSAR与GPS融合技术能够有效提高变形监测的精度与效率,具有较高的实用价值。研究意义在于为地质灾害监测、工程建设监测和城市地面沉降监测等提供可靠的技术支持和应用参考。 展开更多
关键词 INSAR gpS 融合技术 变形监测 数据处理
原文传递
基于SSA-GPR和WPD的电池剩余寿命预测
12
作者 傅鑫 王靖岳 +1 位作者 朱楠 丁建明 《科学技术与工程》 北大核心 2025年第23期10023-10030,共8页
快速准确地获取锂离子电池的剩余使用寿命,对提高设备的可靠性有着重要意义。针对传统高斯过程回归(gaussian process regression,GPR)超参数寻优效果差,寻优困难,利用麻雀搜索算法(sparrow search algorithm,SSA)对高斯过程回归进行超... 快速准确地获取锂离子电池的剩余使用寿命,对提高设备的可靠性有着重要意义。针对传统高斯过程回归(gaussian process regression,GPR)超参数寻优效果差,寻优困难,利用麻雀搜索算法(sparrow search algorithm,SSA)对高斯过程回归进行超参数优化,同时利用小波包分解(wavelet packet decomposition,WPD)降低数据集复杂度,提取相关信息,增加预测精度,提出了将小波包分解和高斯过程回归以及麻雀搜索算法相结合,建立剩余使用寿命(remaining useful life,RUL)预测模型。首先,等压降放电时间曲线作为间接健康因子,电池容量作为直接健康因子,利用Pearson系数验证二者的相关性。其次,利用小波包分解对直接健康因子与间接健康因子进行分解,提取出高频信号和低频信号并将这些信号分为训练集与测试集。然后,建立高斯过程回归模型,利用SSA对该模型进行超参数优化,分别对不同信号进行预测、叠加,实现剩余使用寿命的准确预测。最后,利用公开数据集进行验证。结果表明,本文提出的模型平均绝对误差不超过0.0065、平均绝对百分比误差不超过0.0052,均方根误差不超过0.0078,拥有良好的预测精度和泛化性。 展开更多
关键词 剩余使用寿命 麻雀搜索算法 高斯过程回归 小波包分解
在线阅读 下载PDF
基于AFSA-GPR的超声测厚温度补偿研究
13
作者 杨冬旭 李祥 贾九红 《仪表技术与传感器》 北大核心 2025年第2期91-95,共5页
使用超声信号对高温承压设备进行壁厚在线监测时,温度的变化会影响壁厚测量结果。针对这一问题,提出一种基于人工鱼群算法优化高斯过程回归的AFSA-GPR温度补偿模型。采用人工鱼群算法对高斯过程超参数进行寻优以提高模型预测精度。在室... 使用超声信号对高温承压设备进行壁厚在线监测时,温度的变化会影响壁厚测量结果。针对这一问题,提出一种基于人工鱼群算法优化高斯过程回归的AFSA-GPR温度补偿模型。采用人工鱼群算法对高斯过程超参数进行寻优以提高模型预测精度。在室温(25℃)至500℃环境下进行超声测厚试验研究,结果表明,该温度补偿模型能显著提升高温环境下壁厚测量精度,其MAE为0.014 8 mm, RMSE为0.022 3 mm。 展开更多
关键词 高温承压设备 超声测厚 温度补偿 高斯过程回归 人工鱼群算法
在线阅读 下载PDF
基于GF-GPR的地铁车站基坑变形预测与应用研究
14
作者 张凤明 苏谦 +3 位作者 邓志兴 王呈金 程梦凡 周辰泠 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期563-569,共7页
为解决受噪声影响地铁车站基坑变形预测精度受到限制的问题,文章首先使用高斯滤波(Gaussian filter,GF)算法对监测数据进行降噪处理,再采用高斯过程回归(Gaussian process regression,GPR)算法预测基坑变形,构建一种GF-GPR基坑变形预测... 为解决受噪声影响地铁车站基坑变形预测精度受到限制的问题,文章首先使用高斯滤波(Gaussian filter,GF)算法对监测数据进行降噪处理,再采用高斯过程回归(Gaussian process regression,GPR)算法预测基坑变形,构建一种GF-GPR基坑变形预测模型,并将GF-GPR模型应用于成都某车站地铁基坑的变形预测。结果表明:原始监测数据存在大量噪声,变形不连续,经过GF算法降噪后基坑变形序列变得平稳,同时有用的突变信息仍然被保留。降噪后数据的信噪比(signal-to-noise ratio,SNR)为12.884~17.139,均方误差(mean square error,MSE)为0.430~0.875 mm;所提出的GF-GPR模型的变形预测结果与基坑实际变形趋势一致,GF-GPR模型的预测精度相较于单一GPR算法提高了31%~81%,最大均方根误差降低了0.4367~1.2881 mm。该研究成果可为基坑变形智能预测、施工事故防范提供参考。 展开更多
关键词 地铁车站 组合预测模型 变形预测 基坑水平位移 高斯滤波(GF) 高斯过程回归(gpR)
在线阅读 下载PDF
基于改进灰狼算法优化GPR模型的动力电池RUL预测方法
15
作者 吴旭志 郭健 《储能科学与技术》 北大核心 2025年第2期728-736,共9页
可靠准确地预测动力电池剩余使用寿命(remaining useful life,RUL)可以缓解用户对里程和安全的焦虑。为了提升RUL预测精度,基于NASA数据集,本工作提出了一种改进的灰狼算法来优化高斯过程回归(Gaussian process regression,GPR)模型。... 可靠准确地预测动力电池剩余使用寿命(remaining useful life,RUL)可以缓解用户对里程和安全的焦虑。为了提升RUL预测精度,基于NASA数据集,本工作提出了一种改进的灰狼算法来优化高斯过程回归(Gaussian process regression,GPR)模型。本工作从以下三方面开展研究。首先,基于电池的充放电数据,提取了五种间接健康因子,包括充电电压饱和间隔(CVSI,HI1)、充电峰值温度间隔(CPTI,HI2)、恒流充电间隔(CCCI,HI3)、放电峰值温度区间(DPTI,HI4)和放电恒流间隔(DCCI,HI5),并采用灰色关联方法分析健康因子和容量的相关性。其次,本工作选取GPR方法作为动力电池RUL预测模型,针对传统模型参数辨识已陷入局部最优问题,提出了基于差分算法改进的灰狼算法,提升模型预测能力。最后,利用NASA数据集对本工作所提方法进行验证。实验结果表明,所提算法预测RUL误差控制在2%以内。 展开更多
关键词 动力电池 剩余使用寿命 高斯过程回归 灰狼算法
在线阅读 下载PDF
融合TSO-GPR模型的导电滑环确信可靠性建模与评估
16
作者 何贝琛 李晓阳 +5 位作者 王晶 黄首清 张淑敏 王浩 吴冰林 康锐 《航天器环境工程》 2025年第5期528-536,共9页
太阳电池阵导电滑环的可靠性直接关乎卫星的寿命。针对传统解析模型难以准确描述滑环磨损与可靠性间复杂非线性关系的难题,文章基于导电滑环地面磨损试验的数据,提出采用金枪鱼群优化高斯过程回归(TSO-GPR)的人工智能模型,构建磨损率与... 太阳电池阵导电滑环的可靠性直接关乎卫星的寿命。针对传统解析模型难以准确描述滑环磨损与可靠性间复杂非线性关系的难题,文章基于导电滑环地面磨损试验的数据,提出采用金枪鱼群优化高斯过程回归(TSO-GPR)的人工智能模型,构建磨损率与导电滑环簧片压力和刷块材料硬度的映射关系作为学科交叉方程,进而建立综合考虑多种参数不确定性的确信可靠性模型。试验验证数据表明,相较于GPR模型,TSO-GPR模型预测的RMSE和MAE指标均下降约2个数量级,泛化预测能力显著提升,可支撑导电滑环寿命的准确预测。另外,通过敏感性分析可知,相比于簧片压力,刷块材料硬度对导电滑环可靠度的影响更大,这可为高可靠导电滑环的设计提供参考。 展开更多
关键词 导电滑环 磨损 金枪鱼群优化−高斯过程回归模型 确信可靠性 敏感性分析
在线阅读 下载PDF
基于L1-GPR的船舶航向航迹控制方法研究
17
作者 李诗杰 何家伟 +2 位作者 刘佳仑 刘泰序 徐诚祺 《中国舰船研究》 北大核心 2025年第1期278-288,共11页
[目的]智能船舶在航行过程中由于环境干扰的影响,模型参数的不确定性影响会导致船舶运动控制精度不高,为提高船舶控制算法对干扰的自适应能力,提出一种控制方法。[方法]基于L1自适应控制算法和高斯过程回归(GPR),提出一种欠驱动船舶的... [目的]智能船舶在航行过程中由于环境干扰的影响,模型参数的不确定性影响会导致船舶运动控制精度不高,为提高船舶控制算法对干扰的自适应能力,提出一种控制方法。[方法]基于L1自适应控制算法和高斯过程回归(GPR),提出一种欠驱动船舶的航向航迹控制方法,并利用Lyapunov控制函数推导控制律,以证明闭环控制系统一致全局渐近稳定。利用GPR对船舶航行过程中的突发干扰和环境干扰进行建模,并通过与自适应律结合的方式达到快速消除干扰影响的效果。[结果]考虑突发干扰和时变扰动的航向与航迹控制仿真实验结果表明,L1-GPR控制相比传统的L1自适应控制其平均绝对航向误差可减少约9.88%和23.2%,最大绝对航向误差可减少约8.49%和12.1%,能够有效减少环境干扰影响,快速达到稳定状态。[结论]所提航向航迹控制方法能够有效抵抗航行过程中的各种干扰。 展开更多
关键词 船舶 运动控制 模型参考自适应控制 高斯过程回归 航向控制 航迹控制
在线阅读 下载PDF
GPS-RTK技术在某西北二环高速公路勘测中的应用
18
作者 郝蓉 《建材技术与应用》 2025年第5期102-108,共7页
在交通基础设施建设中,精准测量是保障工程质量和进度的关键。GPS-RTK技术基于卫星定位和载波相位差分原理,通过卫星定位确定测量点三维坐标,利用载波相位差分消除信号传输误差,实现厘米级高精度定位。与传统测量相比,其单人可操作,借... 在交通基础设施建设中,精准测量是保障工程质量和进度的关键。GPS-RTK技术基于卫星定位和载波相位差分原理,通过卫星定位确定测量点三维坐标,利用载波相位差分消除信号传输误差,实现厘米级高精度定位。与传统测量相比,其单人可操作,借助先进通信技术和高效算法,实时高效传输处理数据,大幅降低人力成本,缩短测量时间,提升工作便捷性和效率。在面对复杂地形时,该技术能让测量人员快速抵达测量点获取高精度数据,测量效率数倍提升,测量周期大幅缩短,精度达标,误差可控。 展开更多
关键词 RTK技术 gpS高程勘测 数据处理
在线阅读 下载PDF
基于EWT-EVO/CDO-GPR模型的三峡入库月径流预测 被引量:2
19
作者 徐荣华 崔东文 《三峡大学学报(自然科学版)》 北大核心 2025年第2期26-32,共7页
为提高三峡入库月径流预测精度,提出一种基于经验小波变换(EWT)和能量谷优化(EVO)算法、切尔诺贝利灾难优化(CDO)算法优化的高斯过程回归(GPR)预测模型.首先利用EWT将月径流时间序列分解为趋势项、周期项和波动项;然后介绍EVO、CDO算法... 为提高三峡入库月径流预测精度,提出一种基于经验小波变换(EWT)和能量谷优化(EVO)算法、切尔诺贝利灾难优化(CDO)算法优化的高斯过程回归(GPR)预测模型.首先利用EWT将月径流时间序列分解为趋势项、周期项和波动项;然后介绍EVO、CDO算法原理,利用EVO、CDO优化GPR超参数;最后利用优化获得的最佳超参数建立EWT-EVO-GPR、EWT-CDO-GPR模型对月径流各分量进行预测,重构后得到最终预测结果,并构建基于粒子群优化(PSO)算法、遗传算法(GA)优化的EWT-PSO-GPR、EWT-GA-GPR模型,基于支持向量机(SVM)、BP神经网络的EWT-EVO-SVM、EWT-CDO-SVM、EWT-EVO-BP、EWT-CDO-BP模型,基于小波变换(WT)的WT-EVO-GPR、WT-CDO-GPR模型,基于经验模态分解(EMD)的EMD-EVO-GPR、EMD-CDO-GPR模型和EWT-GPR、EVO-GPR、CDO-GPR模型作对比分析,通过三峡2009至2022年入库月径流时序数据对各模型进行验证.结果表明:EWT-EVO-GPR、EWT-CDO-GPR模型预测的平均绝对百分比误差分别为0.689%、0.699%,决定系数均为0.9999,优于其他对比模型,具有更好的预测效果;EWT兼顾WT、EMD优势,可将月径流时序数据分解为更具规律的子分量,显著提升模型性能,分解效果优于WT、EMD;EVO、CDO对GPR超参数的寻优效果优于PSO、GA,通过超参数寻优,显著提升了GPR性能;在相同情形下,GPR预测性能要优于SVM、BP. 展开更多
关键词 月径流预测 高斯过程回归 能量谷优化算法 切尔诺贝利灾难优化算法 经验小波变换 三峡
在线阅读 下载PDF
基于SE-GPR模型的地下水位时序特征解析与预测
20
作者 刘德利 张雨 +1 位作者 张亚双 赵嵩颖 《吉林水利》 2025年第7期36-42,共7页
针对地下水位预测中非线性特征与不确定性量化难题,提出基于平方指数核高斯过程回归(SE-GPR)的预测模型。以吉林省辽源市为研究区,通过构建多变量时间序列分析框架,整合2022~2023年实测数据,实现地下水位动态演变的概率建模。实验结果表... 针对地下水位预测中非线性特征与不确定性量化难题,提出基于平方指数核高斯过程回归(SE-GPR)的预测模型。以吉林省辽源市为研究区,通过构建多变量时间序列分析框架,整合2022~2023年实测数据,实现地下水位动态演变的概率建模。实验结果表明,SE-GPR模型在5折交叉验证中表现最优,RMSE为0.1458,R2达0.91,较传统方法(如SVM、决策树)误差降低9.5%,且能有效捕捉水位突变特征。研究揭示了区域地下水水位季节性波动规律,验证了SE-GPR在非线性水文系统中的预测优势,为北方半干旱区水资源管理提供了可靠的技术支撑。 展开更多
关键词 地下水位预测 高斯过程回归 平方指数核 不确定性量化
在线阅读 下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部