期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hilbert−Huang Time-Delay Compensation Control Strategy Based on Gauss-DeepAR for Ship Heave Motion Prediction
1
作者 ZHANG Qin HE Dai-jing +1 位作者 GU Bang-ping HU Xiong 《China Ocean Engineering》 2025年第2期209-224,共16页
The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantl... The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantly affected by the hysteresis phenomenon in the wave compensation system.To address this issue,a ship heave motion prediction is proposed in this paper on the basis of the Gauss-DeepAR(AR stands for autoregressive recurrent)model and the Hilbert−Huang time-delay compensation control strategy.Initially,the zero upward traveling wave period of the level 4−6 sea state ship heave motion is analyzed,which serves as the input sliding window for the Gauss-DeepAR prediction model,and probability predictions at different wave direction angles are conducted.Next,considering the hysteresis characteristics of the ship heave motion compensation platform,the Hilbert−Huang transform is employed to analyze and calculate the hysteresis delay of the compensation platform.After the optimal control action value is subsequently calculated,simulations and hardware platform tests are conducted.The simulation results demonstrated that the Gauss-DeepAR model outperforms autoregressive integrated moving average model(ARIMA),support vector machine(SVM),and longshort-term memory(LSTM)in predicting non-independent identically distributed datasets at a 90°wave direction angle in the level 4−6 sea states.Furthermore,the model has good predictive performance and generalizability for non-independent and non-uniformly distributed datasets at a 180°wave direction angle.The hardware platform compensation test results revealed that the Hilbert–Huang method has an outstanding effect on determining the hysteretic delay and selecting the optimal control action value,and the compensation efficiency was higher than 90%in the level 4−6 sea states. 展开更多
关键词 heave motion gauss-deepar prediction model Hilbert−Huang transform delay compensation control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部