The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure cas...The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure casting gating system of a large thin-walled cabin casting.A high-quality dataset was established through orthogonal experiments combined with design criteria for the gating system.Spearman’s correlation analysis was used to select high-quality features.The gating system dimensions were predicted using a gated recurrent unit(GRU)recurrent neural network and an elastic network model.Using EasyCast and ProCAST casting software,a comparative analysis of the flow field,temperature field,and solidification field can be conducted to demonstrate the achievement of steady filling and top-down sequential solidification.Compared to the empirical formula method,this method eliminates trial-and-error iterations,reduces porosity,reduces casting defect volume from 11.23 cubic centimeters to 2.23 cubic centimeters,eliminates internal casting defects through the incorporation of an internally cooled iron,fulfilling the goal of intelligent gating system design.展开更多
Two gating systems namely stepped and tapered runners were used to cast strip samples with different thicknesses by CO2/silicate process using sand grain sizes of AFS 151 and 171. To assess the effect of mould coating...Two gating systems namely stepped and tapered runners were used to cast strip samples with different thicknesses by CO2/silicate process using sand grain sizes of AFS 151 and 171. To assess the effect of mould coating on the properties of thin wall ductile iron, half of the moulds were coated whilst the rest were not coated. Molten metal with the carbon equivalent of 4.29% was prepared and poured at 1 450 ℃. Microstructure of the specimens was analyzed by optical and scanning electron microscopes. Count, area fraction, roundness and diameter of the graphite nodules of the samples were measured by image analyzer. Brinell hardness and tensile tests of all the samples were also conducted. The results show that by using stepped runner gating system with uncoated and coarse sand mould, roundness and count of the graphite nodules decrease whereas diameter and area fraction increase. Although fine sand and coated mould cause longer distance of molten metal travel, hardness and strength of the samples decrease.展开更多
The gating system of a cylindrical magnesium casting has been designed by using multiple objective optimiza- tion and Taguchi method.Mold filling and solidification processes were simulated by using MAGMASOFT(?). T...The gating system of a cylindrical magnesium casting has been designed by using multiple objective optimiza- tion and Taguchi method.Mold filling and solidification processes were simulated by using MAGMASOFT(?). The simulation results indicate that the gating system design has a significant effect on the quality of magne- sium castings.In an effort to obtain the optimal design of gating system,the signal-to-noise (S/N) ratio was used to analyze the effect of various gating designs on cavity filling and casting quality by using a weighting method based on the design of an orthogonal array.Four gating system parameters,namely,ingate height, ingate width,runner height,runner width,were optimized with a consideration of multiple objective criteria including filling velocity,shrinkage porosity and product yield.展开更多
The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas.In this study,the slot gating system is employed to improve mold filling behavior and therefore,to improve the quality o...The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas.In this study,the slot gating system is employed to improve mold filling behavior and therefore,to improve the quality of aluminum castings produced in permanent molds.An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum flowing into permanent molds have been developed.Graphite molds transparent to X-rays are utilized which make it possible to observe the flow pattern through a number of vertically oriented gating systems.The investigation discovers that there are many influencing factors on the mold filling process.This paper focuses its research on some of the factors,such as the dimensions of the vertical riser and slot thickness,as well as roughness of the coating layer.The results indicate that molten metal can smoothly fill into casting cavity with a proper slot gating system.A bigger vertical riser,proper slot thickness and rougher coating can provide not only a better mold filling pattern,but also hot melt into the top of the cavity.A proper temperature gradient is obtainable,higher at the bottom and lower at the top of the casting cavity,which is in favor of feeding during casting solidification.展开更多
In foundries a lot of effort is done to minimize energy consumption in the production to reduce costs and hence increase the competitiveness. At the same time the foundries must live up to the increased demands for hi...In foundries a lot of effort is done to minimize energy consumption in the production to reduce costs and hence increase the competitiveness. At the same time the foundries must live up to the increased demands for high quality castings. Traditional gating systems are known for a straight tapered down runner, a well base and 90° bends in the runner system. Previous work has shown that the traditional way of designing gating systems creates high inconsistency in flow patterns during filling. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. The main objective in the work presented here is to use the principles of the streamlined gating systems to reduce the weight of the gating system relative to the traditional layouts. By reducing the weight of gating system and thereby improving yield, the amount of molten iron needed is also reduced, hence reducing the energy consumption for melting. Experiments in real production lines have proven that it is possible to achieve a reduction in the poured weight by using the streamlined gating systems. In a layout for casting of three valve housings in a vertically parted mould the weight of the gating system was reduced by 1.1 kg changing from the traditional layouts to the streamlined gating systems. This weight reduction corresponds in this case to a 20% weight reduction for the gating system. Using streamlined gating systems with fan gates to give a beneficial heat distribution in the castings may be an efficient tool to eliminate the need for heat treatment. In the experiments the change in gating system from the traditional layout to the streamlined layout removed the need for heat treatment. This obviously means a huge energy saving in the foundry. The energy consumption for heat treatment of iron has been found to be 0.489 kWh/ kg. The valve housing in the experiments weighs 3 kg so when the need for heat treatment is removed, around 1.5 kWh is saved per casting. Along with the reduction in energy used the foundry also save the cost of handling the castings for the heat treatment and the production times is reduced considerably When the moulds for the vertical layout is produced on a DISAMATIC that produces 350 moulds an hour the total energy saved per hour for both melting and heat treatment becomes 2,000 kWh and per eight hour work day 16,000 kWh. Seen in this perspective the potential for saving energy in the foundries is substantial. Furthermore the experiments where ductile iron valve housings was cast also proved that it is possible to lower the pouring temperature from 1,400℃ to 1,300℃ without the risk of cold runs. This is possible due to a high flow rate during mould filling in combination with low velocities due to the use of fan gates. All of this has also been investigated in experiments using glass plate fronted moulds.展开更多
This work is concerned with the hydraulics and f low characterization in a pressurized,horizontal gating system with multiple ingates attached to a plate mold,using transparent water models.Runners with two different ...This work is concerned with the hydraulics and f low characterization in a pressurized,horizontal gating system with multiple ingates attached to a plate mold,using transparent water models.Runners with two different aspect ratios(w/h=0.5 and 2)and four different types of ingates(rectangular,convergent,divergent and venturi)were examined for their influence on flow behavior.Flow behavior was visualized using a high speed camera capable of capturing images up to 10,000 frames per second.Real time experimentation with a few runner–ingate combinations were carried out to validate the usefulness of water models in predicting the f illing behavior.Comparison of the approaches provided useful insights into the filling behavior in critical sections of the flow passages as well as the utility of water models towards understanding of the f illing behavior during real time casting.展开更多
High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a ...High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.展开更多
Microbubbles have attracted considerable attention due to their distinctive properties,such as large surface area,inherent selfcompression,and exceptional mass transfer efficiency.These features render microbubbles va...Microbubbles have attracted considerable attention due to their distinctive properties,such as large surface area,inherent selfcompression,and exceptional mass transfer efficiency.These features render microbubbles valuable across a diverse range of industries,such as water treatment,mineral flotation,and the food industry.While several methods for microbubble generation exist,the gas–liquid membrane dispersion technique emerges as a reproducible and efficient alternative.Nevertheless,conventional approaches struggle to achieve active in situ control of bubble generation.In this study,we introduce an electrostatically responsive liquid gating system(ERLGS)designed for the active management of microbubble production.Utilizing electric fields and anionic surfactants,our system showcases the capability to dynamically regulate bubble size by manipulating the solid–liquid adsorption.Experiments confirm that this active control relies on the electrostatic adsorption and desorption of anionic surfactants,thereby regulating the interactions among the solid–liquid–gas interfaces.Our research elucidates the ERLGS's ability of precisely controlling the generation of bubbles in situ,enabling nearly one-order-of-magnitude change in bubble size,underscoring its applicability in various fields.展开更多
Attosecond light pulses have revolutionized the study of electron dynamics in materials by enabling the observation of ultrafast processes with unprecedented attosecond temporal resolution.They are primarily generated...Attosecond light pulses have revolutionized the study of electron dynamics in materials by enabling the observation of ultrafast processes with unprecedented attosecond temporal resolution.They are primarily generated through the process of high-order harmonic generation.This paper presents a comprehensive setup for attosecond pulse generation and measurement.Using a 900 nm,7 mJ,and 7 fs femtosecond laser with stabilized carrier-envelope phase,we employ polarization gating to generate a near single-cycle,linearly polarized pulse that interacts with neon gas to produce a broadband extreme-ultraviolet continuum with a cutoff photon energy of∼120 eV.The temporal and spectral characteristics of the generated single attosecond pulses are measured using an attosecond streak camera,and the pulse duration is determined to be 59 as through the frequency-resolved optical gating for complete reconstruction of attosecond bursts retrieval algorithm.As part of the Synergetic Extreme Condition User Facility,this setup will facilitate ultrafast research in transient absorption and photoelectron spectroscopy,providing global users with a powerful tool for studying electron dynamics in various materials.展开更多
The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid su...The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid sulfonato-merocyanine(MEH-D)serving as H+donor and diarylethene derivative(DAEA1)as acceptor.After capturing 2 equiv.HCl,the obtained fluorescent molecule DAE-A1-H showed solvatochromic property.Further on,benefiting from that MEH-D released protons and became a ring-closed isomer spiropyran(SP-D)under 440 nm irradiation,DAE-A1 was protonated,turning on fluorescence effect was realized in DAE-A1/MEH-D.In dark,a photo-activated reversible process was realized with SPD changed to MEH-D in situ system.In addition,the OF-DAE-A1-H/SP-D could efficiently and reversibly switch on/off its luminescence upon irradiation by UV–vis light.Significantly,the multi-stimuli-responsive system was successfully applied in logic gate and fluorescence ink,making it an efficient strategy for information encryption and decryption with higher security requirements.展开更多
QR codes are widely used in applications such as information sharing,advertising,and digital payments.However,their growing adoption has made them attractive targets for malicious activities,including malware distribu...QR codes are widely used in applications such as information sharing,advertising,and digital payments.However,their growing adoption has made them attractive targets for malicious activities,including malware distribution and phishing attacks.Traditional detection approaches rely on URL analysis or image-based feature extraction,whichmay introduce significant computational overhead and limit real-time applicability,and their performance often depends on the quality of extracted features.Previous studies in malicious detection do not fully focus on QR code securitywhen combining convolutional neural networks(CNNs)with recurrent neural networks(RNNs).This research proposes a deep learning model that integrates AlexNet for feature extraction,principal component analysis(PCA)for dimensionality reduction,and RNNs to detect malicious activity in QR code images.The proposed model achieves both efficiency and accuracy by transforming image data into a compact one-dimensional sequence.Experimental results,including five-fold cross-validation,demonstrate that the model using gated recurrent units(GRU)achieved an accuracy of 99.81%on the first dataset and 99.59%in the second dataset with a computation time of only 7.433 ms per sample.A real-time prototype was also developed to demonstrate deployment feasibility.These results highlight the potential of the proposed approach for practical,real-time QR code threat detection.展开更多
We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logi...We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.展开更多
A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this for...A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this formula,the impacts of distributed gate resistance and intrinsic channel resistance on noise performance are discussed.Two kinds of noise optimization approaches are performed and applied to the design of a 5 2GHz CMOS LNA.展开更多
Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper w...Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper wick (SCLS-SPC) is proposed to meet the requirements of higher device level heat fluxes and the harsh environments in some applications such as hybrid, fuel cell vehicles and aerospace. Fuzzy logic and proportional-integral-derivative (PID) policies are applied to adjust the electronic temperature within a safe working range. To evaluate the thermal control effect, a mathematical model of a 4-node thermal network and pump are established for predicting the dynamics of the SCLS-SPC. Moreover, the transient response of the 4 nodes and vapor mass flowrate under no control, PID and Fuzzy-PID are numerically investigated and discussed in detail.展开更多
Non-invasive cardiac-pulmonary gating is proposed to improve the imaging resolution. It produces signals based on the cardiac-pulmonary motion of an animal in real-time. The system with the non-invasive gating consist...Non-invasive cardiac-pulmonary gating is proposed to improve the imaging resolution. It produces signals based on the cardiac-pulmonary motion of an animal in real-time. The system with the non-invasive gating consists of a digital signal processor (DSP), an electrocardiography (ECG) detection circuit and a thermoeouple circuit. An enhanced R wave detection algorithm based on zero crossing counts is used to adjust the low sample frequency associated with the respiratory rate of an animal. The thermocouple recognizes the respiration phase by sensing the temperature changes of the nasal airflow of an animal. The proposed gating can accurately generate the gating signal for freely breathing mice (weight of around 0.03 kg), and its respiratory signal is too weak to be detected. Apart from non-invasiveness, compared with other existing gating techniques, it occupies minimal space at lower cost. Actually, it can be used in micro-computed tomography (CT) and other systems needed to detect the cardiac-pulmonary motion. Several tests validate that the proposed cardiac-pulmonary gating can generate the gating signal as required. By using the gating technique, the image resolution is improved.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
Electrical sensing systems, such as those involving eutectic salt, are mostly used in connection to leakage from existing airborne high-temperature air-conducting pipelines. Such complex structured systems are suscept...Electrical sensing systems, such as those involving eutectic salt, are mostly used in connection to leakage from existing airborne high-temperature air-conducting pipelines. Such complex structured systems are susceptible to external interferences and, thus, cannot meet the increasingly strict monitoring needs of a complex air-conducting pipeline system of an aircraft. In view of this point, this paper studies an alternative sensor system based on a dense array fiber grating. To obtain a compact and light-weight airborne signal processing system, a field programmable gate array is used as the main control core that controls the output of the light source. The functions of pulse modulation, analog-to-digital conversion,data buffering and transmission are integrated into a single system, while the linear sensing monitoring is obtained by detecting the time-division and wavelength-division wavelength drift signals of the fiber Bragg grating array. Our experiments show that the spatial resolution of the linear sensing system approaches 5 cm, the temperature measurement accuracy reaches 2 ℃, the temperature measurement range is between 0–250 ℃, and the response time is within 4 s. Compared with the existing electrical monitoring systems, various monitoring indicators have been greatly improved and have broad application prospects.展开更多
Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the r...Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074246,52275390,52375394)the National Defense Basic Scientific Research Program of China(No.JCKY2020408B002)the Key R&D Program of Shanxi Province(No.202102050201011).
文摘The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure casting gating system of a large thin-walled cabin casting.A high-quality dataset was established through orthogonal experiments combined with design criteria for the gating system.Spearman’s correlation analysis was used to select high-quality features.The gating system dimensions were predicted using a gated recurrent unit(GRU)recurrent neural network and an elastic network model.Using EasyCast and ProCAST casting software,a comparative analysis of the flow field,temperature field,and solidification field can be conducted to demonstrate the achievement of steady filling and top-down sequential solidification.Compared to the empirical formula method,this method eliminates trial-and-error iterations,reduces porosity,reduces casting defect volume from 11.23 cubic centimeters to 2.23 cubic centimeters,eliminates internal casting defects through the incorporation of an internally cooled iron,fulfilling the goal of intelligent gating system design.
文摘Two gating systems namely stepped and tapered runners were used to cast strip samples with different thicknesses by CO2/silicate process using sand grain sizes of AFS 151 and 171. To assess the effect of mould coating on the properties of thin wall ductile iron, half of the moulds were coated whilst the rest were not coated. Molten metal with the carbon equivalent of 4.29% was prepared and poured at 1 450 ℃. Microstructure of the specimens was analyzed by optical and scanning electron microscopes. Count, area fraction, roundness and diameter of the graphite nodules of the samples were measured by image analyzer. Brinell hardness and tensile tests of all the samples were also conducted. The results show that by using stepped runner gating system with uncoated and coarse sand mould, roundness and count of the graphite nodules decrease whereas diameter and area fraction increase. Although fine sand and coated mould cause longer distance of molten metal travel, hardness and strength of the samples decrease.
文摘The gating system of a cylindrical magnesium casting has been designed by using multiple objective optimiza- tion and Taguchi method.Mold filling and solidification processes were simulated by using MAGMASOFT(?). The simulation results indicate that the gating system design has a significant effect on the quality of magne- sium castings.In an effort to obtain the optimal design of gating system,the signal-to-noise (S/N) ratio was used to analyze the effect of various gating designs on cavity filling and casting quality by using a weighting method based on the design of an orthogonal array.Four gating system parameters,namely,ingate height, ingate width,runner height,runner width,were optimized with a consideration of multiple objective criteria including filling velocity,shrinkage porosity and product yield.
文摘The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas.In this study,the slot gating system is employed to improve mold filling behavior and therefore,to improve the quality of aluminum castings produced in permanent molds.An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum flowing into permanent molds have been developed.Graphite molds transparent to X-rays are utilized which make it possible to observe the flow pattern through a number of vertically oriented gating systems.The investigation discovers that there are many influencing factors on the mold filling process.This paper focuses its research on some of the factors,such as the dimensions of the vertical riser and slot thickness,as well as roughness of the coating layer.The results indicate that molten metal can smoothly fill into casting cavity with a proper slot gating system.A bigger vertical riser,proper slot thickness and rougher coating can provide not only a better mold filling pattern,but also hot melt into the top of the cavity.A proper temperature gradient is obtainable,higher at the bottom and lower at the top of the casting cavity,which is in favor of feeding during casting solidification.
文摘In foundries a lot of effort is done to minimize energy consumption in the production to reduce costs and hence increase the competitiveness. At the same time the foundries must live up to the increased demands for high quality castings. Traditional gating systems are known for a straight tapered down runner, a well base and 90° bends in the runner system. Previous work has shown that the traditional way of designing gating systems creates high inconsistency in flow patterns during filling. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. The main objective in the work presented here is to use the principles of the streamlined gating systems to reduce the weight of the gating system relative to the traditional layouts. By reducing the weight of gating system and thereby improving yield, the amount of molten iron needed is also reduced, hence reducing the energy consumption for melting. Experiments in real production lines have proven that it is possible to achieve a reduction in the poured weight by using the streamlined gating systems. In a layout for casting of three valve housings in a vertically parted mould the weight of the gating system was reduced by 1.1 kg changing from the traditional layouts to the streamlined gating systems. This weight reduction corresponds in this case to a 20% weight reduction for the gating system. Using streamlined gating systems with fan gates to give a beneficial heat distribution in the castings may be an efficient tool to eliminate the need for heat treatment. In the experiments the change in gating system from the traditional layout to the streamlined layout removed the need for heat treatment. This obviously means a huge energy saving in the foundry. The energy consumption for heat treatment of iron has been found to be 0.489 kWh/ kg. The valve housing in the experiments weighs 3 kg so when the need for heat treatment is removed, around 1.5 kWh is saved per casting. Along with the reduction in energy used the foundry also save the cost of handling the castings for the heat treatment and the production times is reduced considerably When the moulds for the vertical layout is produced on a DISAMATIC that produces 350 moulds an hour the total energy saved per hour for both melting and heat treatment becomes 2,000 kWh and per eight hour work day 16,000 kWh. Seen in this perspective the potential for saving energy in the foundries is substantial. Furthermore the experiments where ductile iron valve housings was cast also proved that it is possible to lower the pouring temperature from 1,400℃ to 1,300℃ without the risk of cold runs. This is possible due to a high flow rate during mould filling in combination with low velocities due to the use of fan gates. All of this has also been investigated in experiments using glass plate fronted moulds.
基金funded by the Department of Science and Technology,Government of India(File No.SR/S3/MERC/0123/2009 dated 28.02.2011& Diary No.100/IFD/12365/2010-11 dated 28.02.2011)
文摘This work is concerned with the hydraulics and f low characterization in a pressurized,horizontal gating system with multiple ingates attached to a plate mold,using transparent water models.Runners with two different aspect ratios(w/h=0.5 and 2)and four different types of ingates(rectangular,convergent,divergent and venturi)were examined for their influence on flow behavior.Flow behavior was visualized using a high speed camera capable of capturing images up to 10,000 frames per second.Real time experimentation with a few runner–ingate combinations were carried out to validate the usefulness of water models in predicting the f illing behavior.Comparison of the approaches provided useful insights into the filling behavior in critical sections of the flow passages as well as the utility of water models towards understanding of the f illing behavior during real time casting.
基金supported by the Major Project of NSFC(51690161)the Student Innovation Program Major Project of Northeastern University(ZD1708)
文摘High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.
基金supported by the National Natural Science Foundation of China(52025132,52300138,21621091,22021001,and 22121001)the National Postdoctoral Program for Innovative Talents(BX20230198)+4 种基金the China Postdoctoral Science Foundation(2023M732945)the Higher Education Discipline Innovation Project(B17027,B16029)the Natural Science Foundation of Fujian Province of China(2022J02059,2023J05012)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM)(RD2022070601)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Microbubbles have attracted considerable attention due to their distinctive properties,such as large surface area,inherent selfcompression,and exceptional mass transfer efficiency.These features render microbubbles valuable across a diverse range of industries,such as water treatment,mineral flotation,and the food industry.While several methods for microbubble generation exist,the gas–liquid membrane dispersion technique emerges as a reproducible and efficient alternative.Nevertheless,conventional approaches struggle to achieve active in situ control of bubble generation.In this study,we introduce an electrostatically responsive liquid gating system(ERLGS)designed for the active management of microbubble production.Utilizing electric fields and anionic surfactants,our system showcases the capability to dynamically regulate bubble size by manipulating the solid–liquid adsorption.Experiments confirm that this active control relies on the electrostatic adsorption and desorption of anionic surfactants,thereby regulating the interactions among the solid–liquid–gas interfaces.Our research elucidates the ERLGS's ability of precisely controlling the generation of bubbles in situ,enabling nearly one-order-of-magnitude change in bubble size,underscoring its applicability in various fields.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174435,12034020,and 92250303)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-091)the National Key R&D Program of China(Grant No.2022YFA1604200).
文摘Attosecond light pulses have revolutionized the study of electron dynamics in materials by enabling the observation of ultrafast processes with unprecedented attosecond temporal resolution.They are primarily generated through the process of high-order harmonic generation.This paper presents a comprehensive setup for attosecond pulse generation and measurement.Using a 900 nm,7 mJ,and 7 fs femtosecond laser with stabilized carrier-envelope phase,we employ polarization gating to generate a near single-cycle,linearly polarized pulse that interacts with neon gas to produce a broadband extreme-ultraviolet continuum with a cutoff photon energy of∼120 eV.The temporal and spectral characteristics of the generated single attosecond pulses are measured using an attosecond streak camera,and the pulse duration is determined to be 59 as through the frequency-resolved optical gating for complete reconstruction of attosecond bursts retrieval algorithm.As part of the Synergetic Extreme Condition User Facility,this setup will facilitate ultrafast research in transient absorption and photoelectron spectroscopy,providing global users with a powerful tool for studying electron dynamics in various materials.
基金financially supported by Natural Science Foundation of Shandong Province(Nos.ZR2022QB061,2022KJ181)National Key R&D Program of China(No.2023YFD1700903)。
文摘The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid sulfonato-merocyanine(MEH-D)serving as H+donor and diarylethene derivative(DAEA1)as acceptor.After capturing 2 equiv.HCl,the obtained fluorescent molecule DAE-A1-H showed solvatochromic property.Further on,benefiting from that MEH-D released protons and became a ring-closed isomer spiropyran(SP-D)under 440 nm irradiation,DAE-A1 was protonated,turning on fluorescence effect was realized in DAE-A1/MEH-D.In dark,a photo-activated reversible process was realized with SPD changed to MEH-D in situ system.In addition,the OF-DAE-A1-H/SP-D could efficiently and reversibly switch on/off its luminescence upon irradiation by UV–vis light.Significantly,the multi-stimuli-responsive system was successfully applied in logic gate and fluorescence ink,making it an efficient strategy for information encryption and decryption with higher security requirements.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University Jeddah,under grant no.(GPIP:1168-611-2024)The authors acknowledge the DSR for financial and technical support.
文摘QR codes are widely used in applications such as information sharing,advertising,and digital payments.However,their growing adoption has made them attractive targets for malicious activities,including malware distribution and phishing attacks.Traditional detection approaches rely on URL analysis or image-based feature extraction,whichmay introduce significant computational overhead and limit real-time applicability,and their performance often depends on the quality of extracted features.Previous studies in malicious detection do not fully focus on QR code securitywhen combining convolutional neural networks(CNNs)with recurrent neural networks(RNNs).This research proposes a deep learning model that integrates AlexNet for feature extraction,principal component analysis(PCA)for dimensionality reduction,and RNNs to detect malicious activity in QR code images.The proposed model achieves both efficiency and accuracy by transforming image data into a compact one-dimensional sequence.Experimental results,including five-fold cross-validation,demonstrate that the model using gated recurrent units(GRU)achieved an accuracy of 99.81%on the first dataset and 99.59%in the second dataset with a computation time of only 7.433 ms per sample.A real-time prototype was also developed to demonstrate deployment feasibility.These results highlight the potential of the proposed approach for practical,real-time QR code threat detection.
文摘We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.
文摘A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this formula,the impacts of distributed gate resistance and intrinsic channel resistance on noise performance are discussed.Two kinds of noise optimization approaches are performed and applied to the design of a 5 2GHz CMOS LNA.
文摘Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper wick (SCLS-SPC) is proposed to meet the requirements of higher device level heat fluxes and the harsh environments in some applications such as hybrid, fuel cell vehicles and aerospace. Fuzzy logic and proportional-integral-derivative (PID) policies are applied to adjust the electronic temperature within a safe working range. To evaluate the thermal control effect, a mathematical model of a 4-node thermal network and pump are established for predicting the dynamics of the SCLS-SPC. Moreover, the transient response of the 4 nodes and vapor mass flowrate under no control, PID and Fuzzy-PID are numerically investigated and discussed in detail.
基金Supported by the National Basic Research Program of China ("973" Program) (2006CB705700)~~
文摘Non-invasive cardiac-pulmonary gating is proposed to improve the imaging resolution. It produces signals based on the cardiac-pulmonary motion of an animal in real-time. The system with the non-invasive gating consists of a digital signal processor (DSP), an electrocardiography (ECG) detection circuit and a thermoeouple circuit. An enhanced R wave detection algorithm based on zero crossing counts is used to adjust the low sample frequency associated with the respiratory rate of an animal. The thermocouple recognizes the respiration phase by sensing the temperature changes of the nasal airflow of an animal. The proposed gating can accurately generate the gating signal for freely breathing mice (weight of around 0.03 kg), and its respiratory signal is too weak to be detected. Apart from non-invasiveness, compared with other existing gating techniques, it occupies minimal space at lower cost. Actually, it can be used in micro-computed tomography (CT) and other systems needed to detect the cardiac-pulmonary motion. Several tests validate that the proposed cardiac-pulmonary gating can generate the gating signal as required. By using the gating technique, the image resolution is improved.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
文摘Electrical sensing systems, such as those involving eutectic salt, are mostly used in connection to leakage from existing airborne high-temperature air-conducting pipelines. Such complex structured systems are susceptible to external interferences and, thus, cannot meet the increasingly strict monitoring needs of a complex air-conducting pipeline system of an aircraft. In view of this point, this paper studies an alternative sensor system based on a dense array fiber grating. To obtain a compact and light-weight airborne signal processing system, a field programmable gate array is used as the main control core that controls the output of the light source. The functions of pulse modulation, analog-to-digital conversion,data buffering and transmission are integrated into a single system, while the linear sensing monitoring is obtained by detecting the time-division and wavelength-division wavelength drift signals of the fiber Bragg grating array. Our experiments show that the spatial resolution of the linear sensing system approaches 5 cm, the temperature measurement accuracy reaches 2 ℃, the temperature measurement range is between 0–250 ℃, and the response time is within 4 s. Compared with the existing electrical monitoring systems, various monitoring indicators have been greatly improved and have broad application prospects.
基金the National Natural Science Foundation of China(No.51175321)the Innovation Program of Shanghai Municipal Education Commission(No.12ZZ158)
文摘Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.