We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ...We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.展开更多
For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neu...For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neutral atom quantum computing equipped with Rydberg blockade gates has made impressive progress recently,which makes it worthwhile to explore its potential in the two-qubit entangling gates,including the controlledphase gate,and in particular,the CZ gate.Provided the quantum coherence is well preserved,improving the fidelity of Rydberg blockade gates calls for special mechanisms to deal with adverse effects caused by realistic experimental conditions.Here,the heralded very-high-fidelity Rydberg blockade controlled-phase gate is designed to address these issues,which contains self-correction and projection as the key steps.This trailblazing method builds upon the previously established buffer-atom-mediated gate framework,with a special form of symmetry under parity–time transformation playing a crucial role in the process.We further analyze the performance with respect to a few typical sources of imperfections.This procedure can also be regarded as quantum hardware error correction or mitigation.While this paper by itself does not cover every single subtle issue and still contains many oversimplifications,we find it reasonable to anticipate a very-high-fidelity two-qubit quantum logic gate operated in the sense of heralded but probabilistic,whose gate error can be reduced to the level of 10^(-4)–10^(-6)or even lower with reasonably high possibilities.展开更多
Trapped-ion systems are one of the leading platforms for quantum information processing, where a key challenge is to scale up system size while maintaining high-fidelity two-qubit operations. A promising approach is t...Trapped-ion systems are one of the leading platforms for quantum information processing, where a key challenge is to scale up system size while maintaining high-fidelity two-qubit operations. A promising approach is to build high-performance modules interconnected via strong coupling. In particular, axial motional modes offer a practical mechanism to couple the ions in a chain, enabling the preparation of Greenberger–Horne–Zeilinger states with up to 24 ions using global operations, as well as high-fidelity two-qubit gates(96.6%–98.0%) in fully connected five-ion chains. Here, we demonstrate two-qubit quantum logic gates in a 5-ion^(40)Ca^(+)chain using axial modes, achieving fidelities exceeding 99% for adjacent pairs and over 98% for arbitrary pairs by carefully tackling dominant error sources. Our results are beneficial to the development of scalable ion-trap quantum processors,quantum simulation and quantum-enhanced metrology.展开更多
In vertical channel transistors(VCTs),source/drain ion implantation(I/I)represents a significant technical challenge due to inherent three-dimensional structural constraints,which induce complications such as difficul...In vertical channel transistors(VCTs),source/drain ion implantation(I/I)represents a significant technical challenge due to inherent three-dimensional structural constraints,which induce complications such as difficulties in dummy gate forma-tion and shadowing effects of I/I.This article systematically investigates the impact of different implantation conditions on the performance of VCTs with and without dummy gates through TCAD simulation.It reveals the significant role of the lightly doped regions(LDRs)naturally formed due to ion implantation in source/drain of VCTs.Furthermore,it was found that VCT with-out dummy gates can achieve an approximately 27%increase in on-state current(Ion)under the same implantation conditions,and can greatly simplify the process flow and reduce costs.Finally,N-type and P-type VCTs were successfully fabricated using this implantation method.展开更多
Objective To observe the clinical efficacy of acupuncture at "four gates"(Hég(合谷 LI 4) and Tàichōng(太冲 LR 3) on sport insomnia. Methods Fifty three free combat athletes with insomnia were treated...Objective To observe the clinical efficacy of acupuncture at "four gates"(Hég(合谷 LI 4) and Tàichōng(太冲 LR 3) on sport insomnia. Methods Fifty three free combat athletes with insomnia were treated with acupuncture at "four gates"(LI 4 and LR 3). The treatment was given once daily, 5 days were one course. Flicker fusion frequency and clinical efficacy were evaluated after two courses. Results Flicker fusion frequencies before and after treatment were(235.40±4.12) Hz and(298.56±5.35) Hz, respectively, and the difference was statistically significant(P0.05). Total effective rate was 92.45%(49/53) with a cure rate of 52.83%(29/53). Conclusion The clinical efficacy of acupuncture at "four gates"(LI 4 and LR 3) is significant in treatment of sport insomnia.展开更多
We propose a scheme for the implementation of remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems. The proposed scheme uses the two ground states of the A-type ions as m...We propose a scheme for the implementation of remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems. The proposed scheme uses the two ground states of the A-type ions as memory instead of the vibrational mode. And the system is robust against the spontaneous radiation and the dephasing.展开更多
High fidelity two-qubit gates are fundamental for scaling up the superconducting qubit number.We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength,and demonstrate the CZ gat...High fidelity two-qubit gates are fundamental for scaling up the superconducting qubit number.We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength,and demonstrate the CZ gate using two different schemes,adiabatic and diabatic methods.The Clifford based randomized benchmarking(RB) method is used to assess and optimize the CZ gate fidelity.The fidelities of adiabatic and diabatic CZ gates are 99.53(8)% and 98.72(2)%,respectively.We also analyze the errors induced by the decoherence.Comparing to 30 ns duration time of adiabatic CZ gate,the duration time of diabatic CZ gate is 19 ns,revealing lower incoherence error rate r’_(incoherent),int=0.0197(5) compared to r_(incoherent,int)=0.0223(3).展开更多
Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded ve...Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers(VCSELs) with optical-injection.Here,two logic inputs are encoded in the detuning of the injected light from a tunable CW laser.The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs.For the same logic inputs,under electro-optic modulation,we perform various digital signal processing(NOT,AND,NAND,XOR,XNOR,OR,NOR) in the all-optical domain by controlling the logic operation of the applied electric field.Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization.To quantify the reliabilities of these logic gates,we further demonstrate their success probabilities.展开更多
We propose a scheme for implementing nongeometric phase gates fbr two trapped ions via adiabatic passage of dark states. During the operation, the vibrational mode is only virtually excited, thus the scheme is insensi...We propose a scheme for implementing nongeometric phase gates fbr two trapped ions via adiabatic passage of dark states. During the operation, the vibrational mode is only virtually excited, thus the scheme is insensitive to heating. Furthermore, the spontaneous emission is suppressed since the ions are always in the electronic ground states. The scheme is robust against small fluctuations of parameters, and the conditional phase is tunable.展开更多
Schemes for two-qubit and three-qubit controlled gates based on cross-Kerr nonlinearity are proposed in this paper.The probability of the success of these gates can be increased by quantum nondemolition detectors,whic...Schemes for two-qubit and three-qubit controlled gates based on cross-Kerr nonlinearity are proposed in this paper.The probability of the success of these gates can be increased by quantum nondemolition detectors,which are used to judge which paths the signal photons pass through.These schemes are almost deterministic and require no ancilla photon.The advantages of these gates over the existing ones include less resource consumption and a higher probability of success,which make our schemes more feasible with current technology.展开更多
We study the phenomenon of decoherence during the operation of one qubit transformation, controlled-not (CNOT) and controlled-controlled-not (C2NOT) quantum gates in a quantum computer model formed by a linear chain o...We study the phenomenon of decoherence during the operation of one qubit transformation, controlled-not (CNOT) and controlled-controlled-not (C2NOT) quantum gates in a quantum computer model formed by a linear chain of three nuclear spins system. We make this study with different type of environments, and we determine the associated decoherence time as a function of the dissipative parameter. We found that the dissipation parameter to get a well defined quantum gates (without significant decoherence) must be within the range of . We also study the behavior of the purity parameter for these gates and different environments and found linear or quadratic decays of this parameter depending on the type of environments.展开更多
In this paper, we have designed and simulated all-optical tristate Pauli X, Y and Z gates using 2D photonic crystal. Simple line and point defects have been used to design the structure. The performance of the structu...In this paper, we have designed and simulated all-optical tristate Pauli X, Y and Z gates using 2D photonic crystal. Simple line and point defects have been used to design the structure. The performance of the structure has been analyzed and investigated by plane wave expansion(PWE) and finite difference time domain(FDTD) methods. Different performance parameters, namely contrast ratio(CR), rise time, fall time, delay time, response time and bit rate, have been calculated. The main advantage of the proposed design is that all the Pauli gates have been realized from a single structure. Due to compact size, fast response time, good CR and high bit rate, the proposed structure can be highly useful for optical computing, data processing and optical integrated circuits.展开更多
By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length a...By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.展开更多
This paper deals with the vertical vibration, the horizontal translatory and flexural vibrations of plate gate with a flat bottom under the action of unstable submerged underflow. Based on a non linear resonant oscil...This paper deals with the vertical vibration, the horizontal translatory and flexural vibrations of plate gate with a flat bottom under the action of unstable submerged underflow. Based on a non linear resonant oscillator model by which the coupled excitation mechanism between the unstable vortices and gate motion can be simulated, the differential equations for the three types of gate vibrations are established. The parameters in the equations are determined by model experiments. Then, the steady state non linear responses of the three types of gate vibrations are calculated. The calculation results are in good agreement with the experimental data of gate vibrations with different reduced velocity and gate parameters by previous researchers.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12441502,12122506,12204230,and 12404554)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0300404)+6 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515020070)Shenzhen Science and Technology Program(Grant No.RCYX20200714114522109)China Postdoctoral Science Foundation(CPSF)(2024M762114)Postdoctoral Fellowship Program of CPSF(GZC20231727)supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.
基金supported by the Science and Technology Commission of Shanghai Municipality(Grant No.24DP2600202)the National Key R&D Program of China(Grant No.2024YFB4504002)the National Natural Science Foundation of China(Grant No.92165107)。
文摘For the quantum error correction and noisy intermediate-scale quantum algorithms to function with high efficiency,the raw fidelity of quantum logic gates on physical qubits needs to satisfy strict requirements.The neutral atom quantum computing equipped with Rydberg blockade gates has made impressive progress recently,which makes it worthwhile to explore its potential in the two-qubit entangling gates,including the controlledphase gate,and in particular,the CZ gate.Provided the quantum coherence is well preserved,improving the fidelity of Rydberg blockade gates calls for special mechanisms to deal with adverse effects caused by realistic experimental conditions.Here,the heralded very-high-fidelity Rydberg blockade controlled-phase gate is designed to address these issues,which contains self-correction and projection as the key steps.This trailblazing method builds upon the previously established buffer-atom-mediated gate framework,with a special form of symmetry under parity–time transformation playing a crucial role in the process.We further analyze the performance with respect to a few typical sources of imperfections.This procedure can also be regarded as quantum hardware error correction or mitigation.While this paper by itself does not cover every single subtle issue and still contains many oversimplifications,we find it reasonable to anticipate a very-high-fidelity two-qubit quantum logic gate operated in the sense of heralded but probabilistic,whose gate error can be reduced to the level of 10^(-4)–10^(-6)or even lower with reasonably high possibilities.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0301603)the National Natural Science Foundation of China (Grant No.92165206)。
文摘Trapped-ion systems are one of the leading platforms for quantum information processing, where a key challenge is to scale up system size while maintaining high-fidelity two-qubit operations. A promising approach is to build high-performance modules interconnected via strong coupling. In particular, axial motional modes offer a practical mechanism to couple the ions in a chain, enabling the preparation of Greenberger–Horne–Zeilinger states with up to 24 ions using global operations, as well as high-fidelity two-qubit gates(96.6%–98.0%) in fully connected five-ion chains. Here, we demonstrate two-qubit quantum logic gates in a 5-ion^(40)Ca^(+)chain using axial modes, achieving fidelities exceeding 99% for adjacent pairs and over 98% for arbitrary pairs by carefully tackling dominant error sources. Our results are beneficial to the development of scalable ion-trap quantum processors,quantum simulation and quantum-enhanced metrology.
文摘In vertical channel transistors(VCTs),source/drain ion implantation(I/I)represents a significant technical challenge due to inherent three-dimensional structural constraints,which induce complications such as difficulties in dummy gate forma-tion and shadowing effects of I/I.This article systematically investigates the impact of different implantation conditions on the performance of VCTs with and without dummy gates through TCAD simulation.It reveals the significant role of the lightly doped regions(LDRs)naturally formed due to ion implantation in source/drain of VCTs.Furthermore,it was found that VCT with-out dummy gates can achieve an approximately 27%increase in on-state current(Ion)under the same implantation conditions,and can greatly simplify the process flow and reduce costs.Finally,N-type and P-type VCTs were successfully fabricated using this implantation method.
文摘Objective To observe the clinical efficacy of acupuncture at "four gates"(Hég(合谷 LI 4) and Tàichōng(太冲 LR 3) on sport insomnia. Methods Fifty three free combat athletes with insomnia were treated with acupuncture at "four gates"(LI 4 and LR 3). The treatment was given once daily, 5 days were one course. Flicker fusion frequency and clinical efficacy were evaluated after two courses. Results Flicker fusion frequencies before and after treatment were(235.40±4.12) Hz and(298.56±5.35) Hz, respectively, and the difference was statistically significant(P0.05). Total effective rate was 92.45%(49/53) with a cure rate of 52.83%(29/53). Conclusion The clinical efficacy of acupuncture at "four gates"(LI 4 and LR 3) is significant in treatment of sport insomnia.
基金Project supported by the National Natural Science Foundation (Grant Nos 10574022 and 10575022)the Funds of the Natural Science of Fujian Province, China (Grant No Z0512006)
文摘We propose a scheme for the implementation of remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems. The proposed scheme uses the two ground states of the A-type ions as memory instead of the vibrational mode. And the system is robust against the spontaneous radiation and the dephasing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11890704,12004042,and 11674376)the Natural Science Foundation of Beijing,China(Grant No.Z190012)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFA0301800)the Key-Area Research and Development Program of Guang-Dong Province,China(Grant No.2018B030326001)。
文摘High fidelity two-qubit gates are fundamental for scaling up the superconducting qubit number.We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength,and demonstrate the CZ gate using two different schemes,adiabatic and diabatic methods.The Clifford based randomized benchmarking(RB) method is used to assess and optimize the CZ gate fidelity.The fidelities of adiabatic and diabatic CZ gates are 99.53(8)% and 98.72(2)%,respectively.We also analyze the errors induced by the decoherence.Comparing to 30 ns duration time of adiabatic CZ gate,the duration time of diabatic CZ gate is 19 ns,revealing lower incoherence error rate r’_(incoherent),int=0.0197(5) compared to r_(incoherent,int)=0.0223(3).
基金Project supported by the National Natural Science Foundation of China(Grant No.61475120)the Innovative Projects in Guangdong Colleges and Universities,China(Grant Nos.2014KTSCX134 and 2015KTSCX146)
文摘Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers(VCSELs) with optical-injection.Here,two logic inputs are encoded in the detuning of the injected light from a tunable CW laser.The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs.For the same logic inputs,under electro-optic modulation,we perform various digital signal processing(NOT,AND,NAND,XOR,XNOR,OR,NOR) in the all-optical domain by controlling the logic operation of the applied electric field.Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization.To quantify the reliabilities of these logic gates,we further demonstrate their success probabilities.
基金Supported by the National Natural Science Foundation of China under Grant No 10225421, and the Fund from Fuzhou University.
文摘We propose a scheme for implementing nongeometric phase gates fbr two trapped ions via adiabatic passage of dark states. During the operation, the vibrational mode is only virtually excited, thus the scheme is insensitive to heating. Furthermore, the spontaneous emission is suppressed since the ions are always in the electronic ground states. The scheme is robust against small fluctuations of parameters, and the conditional phase is tunable.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11264042)the Program for Chun Miao Excellent Talents of Department of Education of Jilin Province,China (Grant No. 201316)
文摘Schemes for two-qubit and three-qubit controlled gates based on cross-Kerr nonlinearity are proposed in this paper.The probability of the success of these gates can be increased by quantum nondemolition detectors,which are used to judge which paths the signal photons pass through.These schemes are almost deterministic and require no ancilla photon.The advantages of these gates over the existing ones include less resource consumption and a higher probability of success,which make our schemes more feasible with current technology.
文摘We study the phenomenon of decoherence during the operation of one qubit transformation, controlled-not (CNOT) and controlled-controlled-not (C2NOT) quantum gates in a quantum computer model formed by a linear chain of three nuclear spins system. We make this study with different type of environments, and we determine the associated decoherence time as a function of the dissipative parameter. We found that the dissipation parameter to get a well defined quantum gates (without significant decoherence) must be within the range of . We also study the behavior of the purity parameter for these gates and different environments and found linear or quadratic decays of this parameter depending on the type of environments.
文摘In this paper, we have designed and simulated all-optical tristate Pauli X, Y and Z gates using 2D photonic crystal. Simple line and point defects have been used to design the structure. The performance of the structure has been analyzed and investigated by plane wave expansion(PWE) and finite difference time domain(FDTD) methods. Different performance parameters, namely contrast ratio(CR), rise time, fall time, delay time, response time and bit rate, have been calculated. The main advantage of the proposed design is that all the Pauli gates have been realized from a single structure. Due to compact size, fast response time, good CR and high bit rate, the proposed structure can be highly useful for optical computing, data processing and optical integrated circuits.
文摘By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.
文摘This paper deals with the vertical vibration, the horizontal translatory and flexural vibrations of plate gate with a flat bottom under the action of unstable submerged underflow. Based on a non linear resonant oscillator model by which the coupled excitation mechanism between the unstable vortices and gate motion can be simulated, the differential equations for the three types of gate vibrations are established. The parameters in the equations are determined by model experiments. Then, the steady state non linear responses of the three types of gate vibrations are calculated. The calculation results are in good agreement with the experimental data of gate vibrations with different reduced velocity and gate parameters by previous researchers.