期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
Pyridine-nitrogen conjugated covalent organic frameworks for high-efficiency gas-solid photocatalytic reduction of CO_(2)to CO 被引量:1
1
作者 Haicheng Jiang Chi Cao +10 位作者 Wei Liu Hao Zhang Qianyu Li Siyuan Zhu Xiaoning Li Jinshuo Li Jinfa Chang Wei Hu Zihao Xing Xiaoqin Zou Guangshan Zhu 《Journal of Energy Chemistry》 2025年第5期127-135,共9页
The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Cova... The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur. 展开更多
关键词 Light-driven CO_(2)reduction gas-solid reaction Conjugated pyridine nitrogen Covalent organic framework CO_(2)catalysis to CO
在线阅读 下载PDF
Mechanistic Scale-Up of Gas-Solid Fluidized Beds via Local Hydrodynamic Similarity
2
作者 Faraj M.Zaid Thaar M.Aljuwaya Muthanna H.Al-Dahhan 《Fluid Dynamics & Materials Processing》 2025年第10期2443-2471,共29页
This study presents a detailed experimental evaluation of a newly developed mechanistic scale-up methodology for gas-solid fluidized beds.Traditional scale-up approaches typically rely on matching global dimensionless... This study presents a detailed experimental evaluation of a newly developed mechanistic scale-up methodology for gas-solid fluidized beds.Traditional scale-up approaches typically rely on matching global dimensionless groups,which often fail to ensure local hydrodynamic similarity.In contrast,the new mechanistic method aims to achieve scale-up by matching the radial profiles of gas holdup between geometrically similar beds at corresponding dimensionless axial positions(z/Dc).This approach is based on the premise that when gas holdup profiles align,other key hydrodynamic parameters—such as solids holdup and particle velocity—also become similar.To validate this methodology,experiments were conducted in two fluidized beds with inner diameters of 14 cm and 44 cm.Optical probes and gamma ray densitometry(GRD)were used to measure local gas holdup,solids holdup,and particle velocity at multiple axial and radial positions.The results show that matched gas holdup profiles led to mean absolute deviations(MAD)below 3%in solids holdup and particle velocity,confirming hydrodynamic similarity.In contrast,unmatched profiles resulted in significant deviations across all parameters. 展开更多
关键词 gas-solid fluidized bed scale-up hydrodynamics similarity optical probe gamma ray densitometry(GRD)
在线阅读 下载PDF
GAS-SOLIDS FLOW BEHAVIOR WITH A GAS VELOCITY CLOSE TO ZERO 被引量:3
3
作者 H. Zhang J.-X. Zhu 《China Particuology》 SCIE EI CAS CSCD 2006年第3期167-177,共11页
In a 9.3 m high and 0.10 m i.d. gas-solids downflow fluidized bed (downer), the radial and axial distributions of the local solids holdups and particle velocities along the downer column were measured with the super... In a 9.3 m high and 0.10 m i.d. gas-solids downflow fluidized bed (downer), the radial and axial distributions of the local solids holdups and particle velocities along the downer column were measured with the superficial gas velocity set to zero. A unique gas-solids flow structure was found in the downer system with zero gas velocity, which is completely different from that under conditions with higher gas velocities, in terms of its radial and axial flow structures as well as its micro flow structure. The gas-solids flow pattern under zero gas velocity conditions, together with that under low gas velocity conditions, can be considered as a special regime which differs from that under higher gas velocity conditions. According to the hydrodynamic properties of the two regimes, they can be named the "dense annulus" regime for the flow pattern under zero or low gas velocity conditions and the "dense core" regime for that under higher gas velocity conditions. 展开更多
关键词 downer reactor gas-solids cocurrent downflow fluidized bed HYDRODYNAMICS flow development particle velocity solids holdup solids flux flow regime
在线阅读 下载PDF
Numerical study on hydrodynamics of gas-solids circulating fluidized bed with L-valve 被引量:3
4
作者 Hailun Ren Wenbin Li +3 位作者 Liang Zeng Kunlei Liu Zhongli Tang Donghui Zhang 《Particuology》 SCIE EI CAS CSCD 2023年第6期37-46,共10页
L-valve is often used as a non-mechanical valve for the circulation of solids in gas-solids fluidized bed(GSFB)due to its advantages in simple construction and easy control.The information on solids circu-lation rate ... L-valve is often used as a non-mechanical valve for the circulation of solids in gas-solids fluidized bed(GSFB)due to its advantages in simple construction and easy control.The information on solids circu-lation rate as well as the hydrodynamics performance of the CFB with L-valve is of great importance for its better control and design.This paper proposes a Eulerian-Eulerian approach based numerical model integrating the computational fluid dynamics(CFD)with turbulent model,the kinetic theory of granular flow(KTGF)and the drag model,thus the solids circulation rate and the local phase velocity as well as solids volume fraction can be predicted simultaneously.With this model,the hydrodynamics perfor-mance of the full loop GSCFB with a L-valve is analyzed in detail.It is found that the drag model affects the simulation significantly and the(energy minimization multiscale)EMMS method shows good per-formance in the full-loop simulation of GSCFB. 展开更多
关键词 gas-solids circulating fluidizedbed L-valve Computational fluid dynamics Drag model Full-loop simulation
原文传递
ELECTROSTATIC PHENOMENA IN GAS-SOLIDS FLUIDIZED BEDS 被引量:2
5
作者 Hsiaotao T.Bi 《China Particuology》 SCIE EI CAS CSCD 2005年第6期395-399,共5页
Electrostatic charges are generated by particle-wall, particle-particle and particle-gas contacts in gas-solids transport lines and fluidized bed reactors. High particle charge densities can lead to particle agglomera... Electrostatic charges are generated by particle-wall, particle-particle and particle-gas contacts in gas-solids transport lines and fluidized bed reactors. High particle charge densities can lead to particle agglomeration, particle segregation, fouling of reactor walls and internals, leading to undesirable by-product and premature shut-down of processing equipment. In this paper, the charge generation, dissipation and segregation mechanisms are examined based on literature data and recent experimental findings in our laboratory. The particle-wall contact charging is found to be the dominant charge generation mechanism for gas-solids pneumatic transport lines, while bipolar charging due to intimate particle-particle contact is believed to be the dominant charge generation mechanism in gas fluidized beds. Such a bipolar charging mechanism is also supported by the segregation patterns of charged particles in fluidized beds in which highly charged particles tend to concentrate in the bubble wake and drift region behind rising bubbles. 展开更多
关键词 ELECTROSTATICS charge generation charge dissipation charge segregation gas-solids flow FLUIDIZATION
在线阅读 下载PDF
Investigation on gas-solids hydrodynamics and matching enhancement in feedstock injection zone of double-level nozzle riser 被引量:1
6
作者 Xiuying Yao Jun Xu +2 位作者 Yiping Fan Chunxi Lu Fuwei Sun 《Particuology》 SCIE EI CAS CSCD 2023年第4期165-176,共12页
With the development of current energy economy,it is necessary to improve the product distribution of fluid catalytic cracking process,which is achieved by a riser reactor with double-level of nozzles.The new riser is... With the development of current energy economy,it is necessary to improve the product distribution of fluid catalytic cracking process,which is achieved by a riser reactor with double-level of nozzles.The new riser is constructed by adding a level of secondary nozzle 0.5 m below the main nozzle of traditional riser.This paper investigates the gas-solids flow and oil-catalyst matching feature based on the optical fiber and tracer technologies.According to the distribution of solids holdup,particle velocity and dimen-sionless jet concentration,the feedstock injection zone can be divided into the upstream flow control region,the main flow control region,and the secondary flow control region in the radial direction.The size of the regions is changed by the jet gas velocity and axial height.There is a poor match of secondary nozzle jet to particles below the main nozzle.The jet gas from secondary nozzles can improve the matching effect of oil-catalyst near the wall and reduce the probability of coking above the main nozzle. 展开更多
关键词 gas-solids flow MATCHING Feed injection zone Double-level nozzles RISER
原文传递
Simulation of gas-solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions 被引量:1
7
作者 Kaixuan Gao Xiwei Ke +5 位作者 Bingjun Du Zhenchuan Wang Yan Jin Zhong Huang Yanhong Li Xuemin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期9-19,共11页
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention... Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler. 展开更多
关键词 Circulating fluidized bed Pure-oxygen combustion gas-solid flow characteristics SIMULATION CO_(2)capture
在线阅读 下载PDF
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model 被引量:1
8
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
在线阅读 下载PDF
Electro-assisted photocatalytic reduction of CO_(2) in ambient air using Ag/TNTAs at the gas-solid interface 被引量:1
9
作者 Feng Yue Zhaoya Fan +7 位作者 Cong Li Yang Meng Shuo Zhang Mengke Shi Minghua Wang Mario Berrettoni Jun Li Hongzhong Zhang 《Materials Reports(Energy)》 EI 2024年第2期71-82,共12页
The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic s... The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle. 展开更多
关键词 Electro-assisted photocatalytic gas-solid interface Ambient air P–N heterojunction Practical applications
在线阅读 下载PDF
Numerical Simulation of Gas-Solid Flow Processes in an Ash Conveying Pipeline with Multiple Feeds
10
作者 Kairuo Chen He Wang Xiangliang Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第12期2721-2739,共19页
Pneumatic conveying technology,as an efficient material transportation method,has been widely used in various industrial fields.To study the powder transportation in horizontal ash conveying pipes,this study relies on... Pneumatic conveying technology,as an efficient material transportation method,has been widely used in various industrial fields.To study the powder transportation in horizontal ash conveying pipes,this study relies on the Computational Particle Fluid Dynamics(CPFD)numerical method.The characteristics of the gas-solid two-phase flow under continuous air supply conditions are analyzed,and the effects on particle movement of factors such as feed port spacing,inlet air velocity,and the number of discharge ports are explored accordingly.The research results show that when the inlet velocity is 5 m/s,adjacent discharged particles come into contact after 8 s.As the inlet air velocity increases,the contact time between adjacent discharge ports is shortened.When the feed port spacing increases from 0.5 to 2 m,the dust accumulation thickness decreases by about 0.6 times.Additionally,when the spacing reaches a certain value,the rate of decrease in dust accumulation thickness begins to diminish. 展开更多
关键词 Pneumatic conveying CPFD gas-solid two-phase flow powder transport continuous gas supply
在线阅读 下载PDF
Numerical Simulation and Optimization of the Gas-Solid Coupled Flow Field and Discharging Performance of Straw Crushers
11
作者 Yuezheng Lan Yu Zhao +2 位作者 Zhiping Zhai Meihua Fan Fushun Li 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2565-2583,共19页
The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and i... The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and improve the efficiency with which crushed material is discharged,first,the main structural parameters influencing the airflow in the crusher are discussed.Then,the coupled gas-solidflowfield in the straw crusher is numerically calculated through solution of the Navier-Stokes equations and application of the discrete element method(DEM).Finally,the discharge performance index of the crusher is examined through detailed analysis of the crushed material dynamics.Additionally,a multi-island genetic algorithm is used to optimize the structure and operational factors that have significant effects on the discharge performance.With optimization,the accumulation rate of crushed materials in the bottom region of the straw crusher decreases by 20.08%,and the massflow rate at the discharge outlet increases by 11.63%. 展开更多
关键词 Straw crusher CFD–DEM gas-solid couplingflowfield discharging performance multi-island genetic algorithm
在线阅读 下载PDF
Gas-solid catalytic reactions over ruthenium-based catalysts 被引量:4
12
作者 施文博 刘霄龙 +3 位作者 曾俊淋 王健 魏耀东 朱廷钰 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1181-1192,共12页
Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analys... Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts. 展开更多
关键词 gas-solid catalytic reaction RUTHENIUM Volatile organic compound Catalytic oxidation Preferential CO oxidation HCl oxidation
在线阅读 下载PDF
Review of gas-solid two phase flow rate-concentration detection technology 被引量:1
13
作者 刘秀 刘吉 +2 位作者 张静 颜兵 史璐璐 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期185-192,共8页
The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of r... The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified. 展开更多
关键词 gas-solid two phase flow rate-concentration electrostatic method
在线阅读 下载PDF
Historical trajectory,current status,and future challenges of powder engines and propellant supply technologies:A comprehensive review
14
作者 Guanlong Ren Haijun Sun +5 位作者 Chunbo Hu Yuxin Yang Chao Li Yihua Xu Rui Xue Xiaoan Hu 《Defence Technology(防务技术)》 2025年第10期142-183,共42页
Powder engine as a novel type of engine using high-energy metal powder as fuel and gas,liquid,or solid as oxidizer.These engines exhibit remarkable adaptability,flexible thrust regulation,and multi-pulse start-stop,wh... Powder engine as a novel type of engine using high-energy metal powder as fuel and gas,liquid,or solid as oxidizer.These engines exhibit remarkable adaptability,flexible thrust regulation,and multi-pulse start-stop,which have significant application potentials in the fields of near-Earth space development,space propulsion systems,and deep-sea exploration.The scope of this review encompasses the classification and application of powder engines,the classification of powdered fuel supply systems,and the prospective trajectories and pivotal challenges of powder engines and fuel supply technologies.This work points out that although certain ground-based experimental challenges on powder engines have been solved,the relative technology remains in the nascent stages of feasibility demonstration and testing.The pneumatic and motor-driven piston methods currently dominate as the primary means for supplying fuel,and the structure of the piston and intake should be further optimized in the future to promote fuel fluidization and delivery efficiency.The adaptability of powder engines and powdered fuels under different pre-treatment and loading methods should be evaluated.Furthermore,the stability of powdered fuel delivery across varying operational environments,the accuracy of CFD modeling,and the precision of mass flow rate measurement and prediction technologies necessitate further enhancement and refinement.These advancements are crucial for the maturation of powder engine technology and its integration into practical applications. 展开更多
关键词 Powder engine Powdered fuel ramjet Multi-pulse ignition Thrust adjustment Mass flow rate regulation gas-solid two-phase flow
在线阅读 下载PDF
Discrete Particle Simulation of Gas-Solid Flow in Air-Blowing Seed Metering Device 被引量:8
15
作者 Zhengquan Li Pei Zhang +3 位作者 Yongchang Sun Chenglin Zheng Liang Xu Dianyu E 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1119-1132,共14页
In this paper,the gas and seed flow characters in the air-blowing seed metering device are investigated by using the coupled computational fluid dynamics and discrete element method(CFD-DEM)in three dimensions(3D).The... In this paper,the gas and seed flow characters in the air-blowing seed metering device are investigated by using the coupled computational fluid dynamics and discrete element method(CFD-DEM)in three dimensions(3D).The method of establishing boundary model based on the computer-aided design(CAD)drawing,has been used to build the boundary model of seed metering device.The 3D laser scanning technique and multi-element method are adopted to establish the particle model.Through a combined numerical and experimental effort,using 3D CFD-DEM software,which is based on the in-house codes,the mechanisms governing the gas and solid dynamic behaviors in the seed metering device have been studied.The gas velocity field and the effect of different rotational speeds and air pressures on the seeding performance and particle velocity have been studied,similar agreements between numerical and experimental results are gained.This reveals that the 3D CFD-DEM model established is able to predict the performance of the air-blowing seed metering device.It can be used to design and optimize the air-blowing seed metering device and other similar agriculture devices. 展开更多
关键词 Seed metering device CFD-DEM CAD SIMULATION gas-solid flow
在线阅读 下载PDF
Decarburization Thermodynamics of High-Carbon Ferromanganese Powders During Gas-Solid Fluidization Process 被引量:7
16
作者 GUO Li-na CHEN Jin ZHANG Meng LIANG Min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第5期1-8,共8页
Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, hig... Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1 226 and 1 312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders. 展开更多
关键词 gas-solid fluidization high carbon ferromanganese powders gas decarbonizer solid-phase decarburization
原文传递
Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics 被引量:7
17
作者 Zhang Yinghui Lan Xingying Gao Jinsen 《Petroleum Science》 SCIE CAS CSCD 2012年第4期535-543,共9页
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ... A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime. 展开更多
关键词 gas-solid flow circulating fluidized bed computational particle fluid dynamics modeling HYDRODYNAMICS
原文传递
Flow Behaviors of Gas-Solid Injector by 3D Simulation with Kinetic Theory of Granular Flow 被引量:8
18
作者 王小芳 金保升 +1 位作者 熊源泉 钟文琪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期823-831,共9页
A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of gr... A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of granular flow. The simulations by Eulerian two-fluid model (TFM) were compared with the corresponding results by discrete element method (DEM) and experiments. It was showed that TFM simulated results were in reasonable agreement with the experimental and DEM simulated results. Based on TFM simulations, gas-solid flow pattern, gas velocity, particle velocity and the static pressure under different driving jet velocity, backpressure and convergent section angle were obtained. The results showed that the time average axial gas velocity sharply decreased and then slightly increased to a constant value in the horizontal conveying pipe. The time average axial particle velocity increased initially and then decreased, but in the outlet region of the convergent section the particle velocity remarkably increased once more to the maximal value. As a whole, the static pressure distribution change trends were found to be independent on driving gas velocity, backpressure and convergent section angle. However, the static pressure increased with increase of convergent section angle and gas jet velocities. The difference of static pressure to backpressure increased with increasing backpressure. 展开更多
关键词 pneumatic conveying gas-solid injector Eulerian two-fluid model kinetic theory of granular flow
在线阅读 下载PDF
Modularized dry coal beneficiation technique based on gas-solid fluidized bed 被引量:7
19
作者 赵跃民 李功民 +4 位作者 骆振福 梁春成 唐利刚 陈增强 邢洪波 《Journal of Central South University》 SCIE EI CAS 2011年第2期374-380,共7页
A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide... A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal. 展开更多
关键词 dry coal beneficiation MODULARIZATION gas-solid fluidized bed wide-size-range medium-solids
在线阅读 下载PDF
Experimental investigation of erosion rate for gas-solid two-phase flow in 304 stainless/L245 carbon steel 被引量:5
20
作者 Bingyuan Hong Yanbo Li +6 位作者 Xiaoping Li Gen Li ong Huang Shuaipeng Ji Weidong Li Jing Gong Jian Guo 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1347-1360,共14页
Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady o... Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions. 展开更多
关键词 gas-solid flow EROSION 304 stainless L245 carbon steel Erosion model
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部