Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP)...Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP.展开更多
The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of th...The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of the different multiphase models were analyzed and compared.showing the rationality of the diffusion and mixture of the cenment raic meals and coal poroder some extent Moreover,the results also shose the rationality of the given inlets parameters of actual process of the precalciner.展开更多
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,...Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model.展开更多
Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady o...Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions.展开更多
Pickup mouth is a key component for the service performance of a street sweeper. Computational fluid dynamics( CFD) technology,as an analysis tool in fluid flow simulation,is employed in this work because it can great...Pickup mouth is a key component for the service performance of a street sweeper. Computational fluid dynamics( CFD) technology,as an analysis tool in fluid flow simulation,is employed in this work because it can greatly shorten the design period. To obtain higher simulation accuracy,the gas-solid coupling inside the process cannot be neglected during numerical simulation.Our optimization procedure considers the influence of structure and operational parameters. It is recommended that the outlet diameter is less than 0. 42 of the width and the outlet inclination angle is 110°for structure parameters. The dust collection efficiency is improved when the reverse flow rate is 70% of the total volume,the sweepertraveling speed is 10 km / h,and the pressure drop is 2 400 Pa.Simulation results exhibit well consistency with the physical experimental results.展开更多
In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to...In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas-solid two-phase flow. The experimen- tal results indicated that solids throughput increased with increasing solids-gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse-dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss, These experimental results provide important reference data for the development of pneumatic conveying technology.展开更多
Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and ...Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and form of the transmitting roadways and the influence of obstacles.The following characterizes the propagation of coal and gas outbursts as two-phase gas-solid flows proximal to source where the coupled effects of pulverized coal and gas flows dominate behavior.The characteristics of shock wave propagation and attenuation were systematically examined for varied roadway geometries using experiments and numerical models.The results demonstrate that the geometry of roadway obstructions is significant and may result in partial compression and sometimes secondary overpressurization in blocked and small comer roadways leading to significant attenuation of outburst shock waves.The shock waves attenuate slowly in both straight and abruptly expanding roadways and more significantly in T-shaped roadways.The most significant attenuation appears in small angle comers and bifurcations in roadways with the largest attenuation occurring in blocked roadways.These results provide basic parameters for simplifying transport in complex roadway networks in the far-field,and guidance for the design of coal and gas outburst prevention facilities and emergency rescue.展开更多
This paper establishes a lattice Boltzmann equation-discrete element method (LBE-DEM) coupled simulation method under the Eulerian-Lagrangian framework at first, and applies it to simulating a two-dimensional gas-soli...This paper establishes a lattice Boltzmann equation-discrete element method (LBE-DEM) coupled simulation method under the Eulerian-Lagrangian framework at first, and applies it to simulating a two-dimensional gas-solid two-phase cross jet. The gas phase is simulated by the lattice-Boltzmann method via the TD2G9 model; the solid phase is traced by the Lagrangian method and the inter-particle collision is calculated by the DEM method. Three values of the Stokes number St=10, 25, and 50 are simulated under the same mass loading. This paper focuses on the characteristics of vortex structure, particle distribution, and the reverse-flow/rebounding rate in cross jets. We analyze the characteristics of fluid vortex motion, particle cluster distribution, rebounding rate of particles and the influencing factors for them. The results show the existence of joint distribution of discrete clusters and discrete particles in cross jets. Meanwhile, it shows that a larger concentration of particles in the early stage of jet evolution or a smaller Stokes number under the same mass loading can produce a larger rebounding rate. However, the rebounding rate of particles at the late stage, in general, is stable.展开更多
Gate valve is mainly used to turn on or turn off the pipeline in pneumatic conveying.When the gate valve is fully open,the particles are easy to collide with the cavity rear wall and enter into the cavity,resulting in...Gate valve is mainly used to turn on or turn off the pipeline in pneumatic conveying.When the gate valve is fully open,the particles are easy to collide with the cavity rear wall and enter into the cavity,resulting in particles’accumulation in the cavity.The particles in cavity will accumulate between the cavity bottom and the flashboard bottom wall and prevent the gate from turning off normally.Meanwhile,the particles’collision with cavity rear wall will cause serious erosion.Both the particles’accumulation and erosion will cause the poor sealing of the gate valve,further resulting in the leakage of the pipeline system.To reduce the particles’accumulation in cavity and erosion on cavity when the gate valve is fully open,we simplify the gate valve into a cavity structure and study it.We find that adding a slope upstream the cavity can effectively reduce the particles’accumulation in the cavity and the erosion on the cavity rear wall.In this work,Eulerian-Lagrangian method in commercial code(FLUENT)was used to study the gas-solid two-phase flow and erosion characteristics of a cavity with a slope.The particle distribution shows that the particles with Stokes number St=1.3 and St=13 cannot enter the cavity due to the slope,but the particles with St=0.13 enter the cavity following the gas.For St=13,the particles collide with the wall many times in the ideal cavity.Erosion results show that the slope can transfer the erosion on cavity rear wall to the slope and reduce the maximum erosion rate of the wall near the cavity to some degrees.展开更多
The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the th...The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the threshold for fluidelastic instability and affect heat transfer efficiency.This paper presents a mathematical model incorporating the squeeze film force between the tube and the support structure.We aim to clarify the mechanisms underlying fluidelastic instability in tube bundle systems exposed to two-phase flow.Using a self-developed computer program,we performed numerical calculations to examine the influence of the squeeze film on the threshold of fluidelastic instability in the tube bundle system.Furthermore,we analyzed how the thickness and length of the squeeze film affect both the underlying mechanisms and the critical velocity of fluidelastic instability.展开更多
This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the...This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the excitation frequency aligns with the natural frequency of the pipe,significantly increasing the degree of operational risk.The governing equation of motion based on the Euler-Bernoulli beam is derived for the relative deflection with stationary simply supported ends,with the effects of the external excitations represented by source terms distributed along the pipe length.The fourth-order partial differential equation is solved via the generalized integral transform technique(GITT),with the solution successfully verified via comparison with results in the literature.A comprehensive analysis of the vibration phenomena and changes in the motion state of the pipe is conducted for three classes of external excitation conditions:same frequency and amplitude(SFSA),same frequency but different amplitudes(SFDA),and different frequencies and amplitudes(DFDA).The numerical results show that with increasing gas volume fraction,the position corresponding to the maximum vibration displacement shifts upward.Compared with conditions without external excitation,the vibration displacement of the pipe conveying two-phase flow under external excitation increases significantly.The frequency of external excitation has a significant effect on the dynamic behavior of a pipe conveying two-phase flow.展开更多
Vibration of flexible pipelines in the marine environment affects the flow characteristics of the transported materials inside the pipelines,which is related to transportation efficiency and energy consumption,thereby...Vibration of flexible pipelines in the marine environment affects the flow characteristics of the transported materials inside the pipelines,which is related to transportation efficiency and energy consumption,thereby necessitating further investigation.In this study,the flow characteristics of particle-liquid two-phase flow transported upward in flexible pipelines are investigated based on the computational fluid dynamics-discrete element method(CFD-DEM).Typical forms of vibration including standing wave vibration and traveling wave vibration are employed and compared with a stationary pipeline.Results reveal that particles in the upward-traveling-wave vibrating pipeline still mainly distribute in the middle of the pipeline,while particles in the standing-wave vibrating pipeline exhibit periodic transverse aggregation near the pipe wall,and the fluctuations of particle concentration and particle z-direction velocity over time in each cross section of the pipeline are more obviously suppressed.When the propagation direction of the vibration wave changes from the same direction as the particle transport to static and then to the opposite direction,its hindering and regulating effect on the particles gradually increases,and the pipeline pressure drop gradually decreases.展开更多
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c...Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.展开更多
In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The e...In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine.展开更多
Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mec...Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.展开更多
Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefor...Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefore,real-time monitoring of solid–liquid two-phase flow in pipelines is crucial for system maintenance.This study develops an autoencoder-based deep learning framework to reconstruct three-dimensional solid–liquid two-phase flow within flexible vibrating pipelines utilizing sparse wall information from sensors.Within this framework,separate X-model and F-model with distinct hidden-layer structures are established to reconstruct the coordinates and flow field information on the computational domain grid of the pipeline under traveling wave vibration.Following hyperparameter optimization,the models achieved high reconstruction accuracy,demonstrating R^(2)values of 0.990 and 0.945,respectively.The models’robustness is evaluated across three aspects:vibration parameters,physical fields,and vibration modes,demonstrating good reconstruction performance.Results concerning sensors show that 20 sensors(0.06%of total grids)achieve a balance between accuracy and cost,with superior accuracy obtained when arranged along the full length of the pipe compared to a dense arrangement at the front end.The models exhibited a signal-to-noise ratio tolerance of approximately 27 dB,with reconstruction accuracy being more affected by sensor failures at both ends of the pipeline.展开更多
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan...With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.展开更多
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput...By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
基金supported by the National High-Tech.R&D Program of China(the National 863 plans projects,Grant No.2007AA03Z352)
文摘Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP.
文摘The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of the different multiphase models were analyzed and compared.showing the rationality of the diffusion and mixture of the cenment raic meals and coal poroder some extent Moreover,the results also shose the rationality of the given inlets parameters of actual process of the precalciner.
文摘Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model.
基金supported by the Zhejiang Province Key Research and Development Plan(2021C03152)Zhoushan Science and Technology Project(2021C21011)+1 种基金Industrial Project of Public Technology Research of Zhejiang Province Science and Technology Department(LGG18E040001)Scientific Research Project of Zhejiang Province Education Department(Y20173854)
文摘Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions.
基金National Natural Science Foundation of China(No.51375202)
文摘Pickup mouth is a key component for the service performance of a street sweeper. Computational fluid dynamics( CFD) technology,as an analysis tool in fluid flow simulation,is employed in this work because it can greatly shorten the design period. To obtain higher simulation accuracy,the gas-solid coupling inside the process cannot be neglected during numerical simulation.Our optimization procedure considers the influence of structure and operational parameters. It is recommended that the outlet diameter is less than 0. 42 of the width and the outlet inclination angle is 110°for structure parameters. The dust collection efficiency is improved when the reverse flow rate is 70% of the total volume,the sweepertraveling speed is 10 km / h,and the pressure drop is 2 400 Pa.Simulation results exhibit well consistency with the physical experimental results.
基金the financial support from the National Science and Technology Support Program of China(no.2012BAB13B04)
文摘In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas-solid two-phase flow. The experimen- tal results indicated that solids throughput increased with increasing solids-gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse-dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss, These experimental results provide important reference data for the development of pneumatic conveying technology.
基金the State Key Research Development Program of China(Grant No.2018YFC0808101)the National Natural Science Foundation of China(51774292,51874314,51604278,51804312)the Yue Qi Distinguished Scholar Project,China University of Mining&Technology,Beijing,the Yue Qi Young Scholar Project,China University of Mining&Technology,Beijing.
文摘Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and form of the transmitting roadways and the influence of obstacles.The following characterizes the propagation of coal and gas outbursts as two-phase gas-solid flows proximal to source where the coupled effects of pulverized coal and gas flows dominate behavior.The characteristics of shock wave propagation and attenuation were systematically examined for varied roadway geometries using experiments and numerical models.The results demonstrate that the geometry of roadway obstructions is significant and may result in partial compression and sometimes secondary overpressurization in blocked and small comer roadways leading to significant attenuation of outburst shock waves.The shock waves attenuate slowly in both straight and abruptly expanding roadways and more significantly in T-shaped roadways.The most significant attenuation appears in small angle comers and bifurcations in roadways with the largest attenuation occurring in blocked roadways.These results provide basic parameters for simplifying transport in complex roadway networks in the far-field,and guidance for the design of coal and gas outburst prevention facilities and emergency rescue.
基金supported by the National Natural Science Foundation of China (Grant No. 51106180)the research funds of China University of Petroleum, Beijing (Grant No. BJ-2010-03)
文摘This paper establishes a lattice Boltzmann equation-discrete element method (LBE-DEM) coupled simulation method under the Eulerian-Lagrangian framework at first, and applies it to simulating a two-dimensional gas-solid two-phase cross jet. The gas phase is simulated by the lattice-Boltzmann method via the TD2G9 model; the solid phase is traced by the Lagrangian method and the inter-particle collision is calculated by the DEM method. Three values of the Stokes number St=10, 25, and 50 are simulated under the same mass loading. This paper focuses on the characteristics of vortex structure, particle distribution, and the reverse-flow/rebounding rate in cross jets. We analyze the characteristics of fluid vortex motion, particle cluster distribution, rebounding rate of particles and the influencing factors for them. The results show the existence of joint distribution of discrete clusters and discrete particles in cross jets. Meanwhile, it shows that a larger concentration of particles in the early stage of jet evolution or a smaller Stokes number under the same mass loading can produce a larger rebounding rate. However, the rebounding rate of particles at the late stage, in general, is stable.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51876193).
文摘Gate valve is mainly used to turn on or turn off the pipeline in pneumatic conveying.When the gate valve is fully open,the particles are easy to collide with the cavity rear wall and enter into the cavity,resulting in particles’accumulation in the cavity.The particles in cavity will accumulate between the cavity bottom and the flashboard bottom wall and prevent the gate from turning off normally.Meanwhile,the particles’collision with cavity rear wall will cause serious erosion.Both the particles’accumulation and erosion will cause the poor sealing of the gate valve,further resulting in the leakage of the pipeline system.To reduce the particles’accumulation in cavity and erosion on cavity when the gate valve is fully open,we simplify the gate valve into a cavity structure and study it.We find that adding a slope upstream the cavity can effectively reduce the particles’accumulation in the cavity and the erosion on the cavity rear wall.In this work,Eulerian-Lagrangian method in commercial code(FLUENT)was used to study the gas-solid two-phase flow and erosion characteristics of a cavity with a slope.The particle distribution shows that the particles with Stokes number St=1.3 and St=13 cannot enter the cavity due to the slope,but the particles with St=0.13 enter the cavity following the gas.For St=13,the particles collide with the wall many times in the ideal cavity.Erosion results show that the slope can transfer the erosion on cavity rear wall to the slope and reduce the maximum erosion rate of the wall near the cavity to some degrees.
基金financially supported by the National Natural Science Foundation of China(Grant No.12072336).
文摘The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the threshold for fluidelastic instability and affect heat transfer efficiency.This paper presents a mathematical model incorporating the squeeze film force between the tube and the support structure.We aim to clarify the mechanisms underlying fluidelastic instability in tube bundle systems exposed to two-phase flow.Using a self-developed computer program,we performed numerical calculations to examine the influence of the squeeze film on the threshold of fluidelastic instability in the tube bundle system.Furthermore,we analyzed how the thickness and length of the squeeze film affect both the underlying mechanisms and the critical velocity of fluidelastic instability.
基金financially supported by the Key Research and Development Program of Shandong Province(Grant Nos.2022CXGC020405,2023CXGC010415 and 2025TSGCCZZB0238)the National Natural Science Foundation of China(Grant No.52171288)the financial support from CNPq,FAPERJ,ANP,Embrapii,and China National Petroleum Corporation(CNPC).
文摘This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the excitation frequency aligns with the natural frequency of the pipe,significantly increasing the degree of operational risk.The governing equation of motion based on the Euler-Bernoulli beam is derived for the relative deflection with stationary simply supported ends,with the effects of the external excitations represented by source terms distributed along the pipe length.The fourth-order partial differential equation is solved via the generalized integral transform technique(GITT),with the solution successfully verified via comparison with results in the literature.A comprehensive analysis of the vibration phenomena and changes in the motion state of the pipe is conducted for three classes of external excitation conditions:same frequency and amplitude(SFSA),same frequency but different amplitudes(SFDA),and different frequencies and amplitudes(DFDA).The numerical results show that with increasing gas volume fraction,the position corresponding to the maximum vibration displacement shifts upward.Compared with conditions without external excitation,the vibration displacement of the pipe conveying two-phase flow under external excitation increases significantly.The frequency of external excitation has a significant effect on the dynamic behavior of a pipe conveying two-phase flow.
基金supported by the National Natural Science Foundation of China(Grant Nos.52471293,12372270)the National Youth Science Foundation of China(Grant Nos.52101322,52108375)+3 种基金the National Key Research and Development Program of China(Grant No.2023YFC2811600)supported by the Program for Intergovernmental International S&T Cooperation Projects of Shanghai Municipality(Grant No.22160710200)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Grant No.SL2022PT101)the Open Fund of the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2415).
文摘Vibration of flexible pipelines in the marine environment affects the flow characteristics of the transported materials inside the pipelines,which is related to transportation efficiency and energy consumption,thereby necessitating further investigation.In this study,the flow characteristics of particle-liquid two-phase flow transported upward in flexible pipelines are investigated based on the computational fluid dynamics-discrete element method(CFD-DEM).Typical forms of vibration including standing wave vibration and traveling wave vibration are employed and compared with a stationary pipeline.Results reveal that particles in the upward-traveling-wave vibrating pipeline still mainly distribute in the middle of the pipeline,while particles in the standing-wave vibrating pipeline exhibit periodic transverse aggregation near the pipe wall,and the fluctuations of particle concentration and particle z-direction velocity over time in each cross section of the pipeline are more obviously suppressed.When the propagation direction of the vibration wave changes from the same direction as the particle transport to static and then to the opposite direction,its hindering and regulating effect on the particles gradually increases,and the pipeline pressure drop gradually decreases.
基金the financial support from the National Natural Science Foundation of China (No.42102127)the Postdoctoral Research Foundation of China (No.2024 M751860)。
文摘Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.
基金supported by the National Natural Science Foundation of China (Grant No. 12202204)the Natural Science Foundation of Jiangsu Province (Grant No. BK20220953)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science and Technology Association's Young Talent Nurturing Program of Jiangsu Province (Grant No. JSTJ-2024-004)
文摘In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine.
基金supported by the National Key Research and Development Program of China(No.2022YFC3702000)the National Natural Science Foundation of China(No.52070169)the Project of Bureau of Science and Technology of Zhoushan,China(No.2022C41013).
文摘Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.
基金financial support by the National Natural Science Foundation of China(Nos.52471293 and 12372270)the National Youth Science Foundation of China(Nos.52101322 and 52108375)+3 种基金the Program for Intergovernmental International S&T Cooperation Projects of Shanghai Municipality,China(Nos.24510711100 and 22160710200)The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2022PT101)is also gratefully acknowledgedfunded by the Open Fund of the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology(No.LP2415)the National Key R&D Program of China(No.2023YFC2811600)is gratefully acknowledged.
文摘Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefore,real-time monitoring of solid–liquid two-phase flow in pipelines is crucial for system maintenance.This study develops an autoencoder-based deep learning framework to reconstruct three-dimensional solid–liquid two-phase flow within flexible vibrating pipelines utilizing sparse wall information from sensors.Within this framework,separate X-model and F-model with distinct hidden-layer structures are established to reconstruct the coordinates and flow field information on the computational domain grid of the pipeline under traveling wave vibration.Following hyperparameter optimization,the models achieved high reconstruction accuracy,demonstrating R^(2)values of 0.990 and 0.945,respectively.The models’robustness is evaluated across three aspects:vibration parameters,physical fields,and vibration modes,demonstrating good reconstruction performance.Results concerning sensors show that 20 sensors(0.06%of total grids)achieve a balance between accuracy and cost,with superior accuracy obtained when arranged along the full length of the pipe compared to a dense arrangement at the front end.The models exhibited a signal-to-noise ratio tolerance of approximately 27 dB,with reconstruction accuracy being more affected by sensor failures at both ends of the pipeline.
基金supported by the Beijing Municipal Science&Technology Commission(Z231100006123010).
文摘With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices.
基金supported by the National Natural Science Foundation of China(Grant No.11972194).
文摘By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.