Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, hig...Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1 226 and 1 312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders.展开更多
As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-s...As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated.展开更多
Pseudo-Particle Modeling (PPM) is a particle method proposed by Ge and Li in 1996 [Ge, W., & Li, J. (1996). Pseudo-particle approach to hydrodynamics of particle-fluid systems, in M. Kwauk & J. Li (Eds.), Proc...Pseudo-Particle Modeling (PPM) is a particle method proposed by Ge and Li in 1996 [Ge, W., & Li, J. (1996). Pseudo-particle approach to hydrodynamics of particle-fluid systems, in M. Kwauk & J. Li (Eds.), Proceedings of the 5th international conference on drculating fluidized bed (pp. 260-265). Beijing: Science Press] and has been used to explore the microscopic mechanism in complex particle-fluid systems. But as a particle method, high computational cost remains a main obstacle for its large-scale application; therefore, parallel implementation of this method is highly desirable. Parallelization of two-dimensional PPM was carried out by spatial decomposition in this paper. The time costs of the major functions in the program were analyzed and the program was then optimized for higher efficiency by dynamic load balancing and resetting of particle arrays. Finally, simulation on a gas-solid fluidized bed with 102,400 solid particles and 1.8 × 10^7 pseudo-particles was performed successfully with this code, indicating its scalability in future applications.展开更多
Hydrodynamic characteristics of fluidization in a conical or tapered bed differ from those in a columnar bed because the superficial velocity in the bed varies in the axial direction. Fixed and fluidized regions could...Hydrodynamic characteristics of fluidization in a conical or tapered bed differ from those in a columnar bed because the superficial velocity in the bed varies in the axial direction. Fixed and fluidized regions could coexist and sharp variations in pressure drop could occur, thereby giving rise to a noticeable pressure drop-flow rate hysteresis loop under incipient fluidization conditions. To explore these unique properties, several experiments were carried out using homogeneous, well-mixed, ternary mixtures with three dif- ferent particle sizes at varying composition in gas-solid conical fluidized beds with varying cone angles. The hydrodynamic characteristics determined include the minimum fluidization velocity, bed fluctuation, and bed expansion ratios. The dependence of these quantities on average particle diameter, mass fraction of the fines in the mixture, initial static bed height, and cone angle is discussed. Based on dimensional analysis and factorial design, correlations are developed using the system parameters, i.e. geometry of the bed (cone angle), particle diameter, initial static bed height, density of the solid, and superficial velocity of the fluidizing medium. Experimental values of minimum fluidization velocity, bed fluctuation, and bed expansion ratios were found to agree well with the developed correlations.展开更多
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention...Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.展开更多
We present a short retrospective review of the existing literature about the dynamics of(dry)granular matter under the effect of vibrations.The main objective is the development of an integrated resource where vital i...We present a short retrospective review of the existing literature about the dynamics of(dry)granular matter under the effect of vibrations.The main objective is the development of an integrated resource where vital information about past findings and recent discoveries is provided in a single treatment.Special attention is paid to those works where successful synthetic routes to as-yet unknown phenomena were identified.Such landmark results are analyzed,while smoothly blending them with a history of the field and introducing possible categorizations of the prevalent dynamics.Although no classification is perfect,and it is hard to distillate general properties out of specific observations or realizations,two possible ways to interpret the existing results are defined according to the type of forcing or the emerging(ensuing)regime of motion.In particular,first results concerning the case where vibrations and gravity are concurrent(vertical shaking)are examined,then the companion situation with vibrations perpendicular to gravity(horizontal shaking)is described.Universality classes are introduced as follows:(1)Regimes where sand self-organizes leading to highly regular geometrical“pulsating”patterns(thin layer case);(2)Regimes where the material undergoes“fluidization”and develops an internal multicellular convective state(tick layers case);(3)Regimes where the free interface separating the sand from the overlying gas changes inclination or develops a kind a patterned configuration consisting of stable valleys and mountains or travelling waves;(4)Regimes where segregation is produced,i.e.,particles of a given size tend to be separated from the other grains(deep containers).Where possible,an analogy or parallelism is drawn with respect to the companion field of fluid-dynamics for which the assumption of“continuum”can be applied.展开更多
This article presents further experimental results of the Magnetization-LAST mode in magnetically assisted gas-fluidized tapered beds, including external transverse magnetic field control of solid phase movement, cent...This article presents further experimental results of the Magnetization-LAST mode in magnetically assisted gas-fluidized tapered beds, including external transverse magnetic field control of solid phase movement, central channel formation, spout depth and the pressure drop across the bed. Phase diagrams similar to those recently reported for the Magnetization-FIRST mode were also developed. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number pertinent to particle aggregate formation was applied to develop the scaling relationships.展开更多
The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore,such as titanomagnetite.However,the defluidization of reduc...The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore,such as titanomagnetite.However,the defluidization of reduced iron particles with a high metallization degree at a high temperature will seriously affect the operation of fluidized bed reduction.Coupling the pre-oxidation enhancing reduction and the particle surface modification of titanomagnetite,the behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized bed reduction of titanomagnetite are systematically studied in this paper.Pre-oxidation treatment of titanomagnetite can significantly lower the critical stable reduction fluidization gas velocity to 0.17 m/s,which is reduced by 56%compared to that of titanomagnetite reduction without pre-oxidation,while achieving a metallization degree of>90%,Corresponding to the different reduction fluidization behaviors,three pre-oxidation operation regions have been divided,taking oxidation degrees of 26%and 86%as the boundaries.Focusing on the particle surface morphology evolution in the pre-oxidation-reduction process,the relationship between the surface morphology of pre-oxidized ore and the reduced iron with fluidization properties is built.The improving method of pre-oxidation on the reduction fluidization provides a novel approach to prevent defluidization by particle surface modification,especially for the fluidized bed reduction of poly-metallic iron ore.展开更多
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi...The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.展开更多
Hydrodynamic features of gas-solid generalized fluidization can be well expressed in the form of phase diagrams,which are important for engineering design.Mesoscale structure presents almost universally in generalized...Hydrodynamic features of gas-solid generalized fluidization can be well expressed in the form of phase diagrams,which are important for engineering design.Mesoscale structure presents almost universally in generalized fluidization and should be considered in such phase diagrams.However,current phase diagrams were mainly proposed for cocurrent upward flow according to experimental data or empirical correlations with homogeneous assumption.The energy-minimization multiscale(EMMS)model has shown the capability of capturing mesoscale structure in generalized fluidization,so EMMS-based phase diagrams of generalized fluidization were proposed in this article,which describe more reasonable global hydrodynamics over all regimes including the important engineering phenomena of choking and flooding.These characteristics were also found in discrete particle simulation under various conditions.For wider range of application,the typical hydrodynamic parameters of the phase diagrams were correlated to non-dimensional numbers reflecting the effects of material properties and operation conditions.This study thus shows a possible route to develop a unified phase diagram in the future.展开更多
In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization charact...In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization characteristics in a gas-solid fluidized bed.The Euler-Euler two fluid model(TFM)approach based on the kinetic theory of granular flow(KTGF)and the standard k-epsilon turbulence model was employed in the numerical simulation by using ANSYS Fluent 15.0.The results showed that the orifice size and the orifice pitch of gas distributor had a significant influence on the flow characteristics in the gas-solid fluidized bed.With a decreasing orifice size and orifice pitch of gas distributor having the same opening area,the distributor pressure drop,the initial bubble size,and the height of dead zone just above the distributor were decreased,and the bed pressure drop was increased more than that of the larger orifice size and orifice pitch of distributors,the distribution of solid volume fraction was also more homogeneous for the smaller orifice size.展开更多
Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on ...Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on the kinetics of fuidization reduction of iron ore powder under low-temperature conditions ranging from 783 to 903 K was investigated to describe the fluidization reduction rate of iron ore powder from three aspects:microstructure change,reaction limiting link,and apparent activation energy of the reaction,exploring their internal correlation.The experimental results revealed that in a temperature range of 783-813 K,the formation of a dense iron layer hindered the internal diffusion of reducing gas,resulting in relatively high gas diffusion resistance.In addition,due to the differences in limiting links and reaction pathways in the intermediate stage of reduction,the apparent activation energy of the reaction varied.The apparent activation energy of the reaction ranged from 23.36 to 89.13 kJ/mol at temperature ranging from 783 to 813 K,while it ranged from 14.30 to 68.34 kJ/mol at temperature ranging from 873 to 903 K.展开更多
The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. Th...The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△Dbt)1/3√RgMQ combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data correlations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.展开更多
Random characteristics of the dynamic heterogeneous structure in gas\|solid fluidization have been studied by reconstructing voidage time series. It is indicated that the dense phase, the dilute phase and the dense/di...Random characteristics of the dynamic heterogeneous structure in gas\|solid fluidization have been studied by reconstructing voidage time series. It is indicated that the dense phase, the dilute phase and the dense/dilute cycle elements show random dynamic behavior satisfying the so\|called Weibull distribution, three parameters of which change regularly with operating conditions.展开更多
The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Cova...The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.展开更多
Nickel laterite ore is an important nickel-bearing mineral.Research on pre-heating and hydrogen pre-reduction in the pyrometallurgical process of nickel laterite ore is very limited,especially when using fluidized bed...Nickel laterite ore is an important nickel-bearing mineral.Research on pre-heating and hydrogen pre-reduction in the pyrometallurgical process of nickel laterite ore is very limited,especially when using fluidized bed roasting.This study systematically explores the mechanisms of fluidized bed pre-heating treatment and hydrogen pre-reduction in the roasting process of saprolitic nickel laterite ore.According to single-factor experiment results,the appropriate pre-heating and pre-reduction conditions were a pre-heating temperature of 700℃,a pre-heating time of 30 min,a pre-reduction temperature of 700℃,a pre-reduction time of 30 min,and a hydrogen concentration of 80%.Then,the nickel metallization rate and iron metallization rate reached 90.56%and 41.31%,respectively.Various analytical and testing methods were employed to study the changes in phase composition,magnetism,surface element valence states,and microstructure of nickel laterite ore during fluidized pre-heating and pre-reduction.The study shows that hydrogen can achieve nickel reduction at relatively low temperatures.It was also found that pre-heating treatment of nickel laterite ore is beneficial.Pre-heating opens up the mineral structures of serpentine and limonite,allowing the reducing gas and nickel to interact quickly during the reduction process,enhancing the pre-reduction process.展开更多
Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is...Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.展开更多
For the treatment of the mixed flue gas desulfurization wastewater with high salinity by the biological fluidized bed process,the optimum temperature was 25-35℃,and the optimum hydraulic retention time was 10 h.When ...For the treatment of the mixed flue gas desulfurization wastewater with high salinity by the biological fluidized bed process,the optimum temperature was 25-35℃,and the optimum hydraulic retention time was 10 h.When the influent quality was stable,the average concentration of COD,NH_(4)^(+)-N and TN in the inlet water was 210,11 and 16.3 mg/L,respectively,and their average concentration in the effluent was 54,0.32 and 4.09 mg/L,respectively.The treatment effect was good.When the incoming water quality of flue gas desulfurization wastewater fluctuated greatly,the effluent quality was still relatively stable after being treated by the biological fluidized bed,indicating that the biological fluidized bed process had a good ability to resist the impact of water quality in the treatment of high-salinity flue gas desulfurization wastewater.At the same time,the biological fluidized bed process provides a reference for high-salinity wastewater that is difficult to be biologically treated.展开更多
Pressurized oxy-fuel combustion is a next-generation and low-cost carbon capture technology with industrial application potential.This work presents an innovative research exploration-coupling coal pressurized fluidiz...Pressurized oxy-fuel combustion is a next-generation and low-cost carbon capture technology with industrial application potential.This work presents an innovative research exploration-coupling coal pressurized fluidized bed oxy-fuel combustion technology with energy utilization of poultry manure as a renewable and carbon-neutral fuel,in order to capture CO_(2)and solve the problem of poultry manure treatment simultaneously.In this study,a stable co-combustion of coal and chicken manure in a laboratory-scale pressurized fluidized bed under typical oxy-fuel condition(30%O_(2)/70%CO_(2),i.e.,Oxy-30)is achieved.The key parameters including the combustion pressure(0.1-0.5 MPa)and chicken-manure proportion(0%to 100%)and their impacts on fundamental combustion efficiency,carbon conversion,nitrogen and sulfur pollutant emissions,and residue ash characteristics have been investigated.The result show that pressurization favors an increase in the CO_(2)enrichment concentration and fluidized bed combustion efficiency.During co-combustion under 0.1 and 0.3 MPa,the CO_(2)concentration in the flue gas is the highest when the chicken manure blending ratio(M_(pm))is 25%.Although the NO emissions fluctuate and even increase as Mpm increases,the co-combustion of coal and chicken manure exhibits a synergistic effect in reducing NO conversion rate(XNO).The effect of pressurization on reducing NO emission is significant,XNO at M_(pm)=25%decreasing from 15%to 5%as the pressure(P)increases from 0.1 to 0.5 MPa.As P increases from 0.1 to 0.5 MPa and Mpm increases from 0%to 50%,the SO_(2) emissions and conversion rates decrease.The self-desulfurization process plays an important role in the reduction of SO_(2) emissions during pressurized oxy-fuel co-combustion.The aim of this work is to advance the development and application of pressurized fluidized bed oxy-fuel co-combustion technology and promote a circular bioeconomy and carbon-free waste management for biomass derived from livestock manure.展开更多
Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really unifor...Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really uniform films.This work combining nanoparticle fluidization technology with atomic layer deposition(ALD) technology to achieve precise surface modification of a large number of micro-nano particles.First,we explored the fluidization characteristics of TiO_(2) nanoparticles in a home-made atmospheric fluidized bed ALD reactor(FB-ALD) to ensure the uniform fluidization of a large number of nanoparticles.Then TiCl_(4) and H_(2)O were used as precursors to deposit amorphous TiO_(2) films on the surface of TiO_(2) nanoparticles at 80℃ under atmospheric pressure,and the growth per cycle was about 0.109 nm per cycle.After 30 ALD cycles,the film thickness was about 3.1 nm,which could almost fully suppress the photocatalytic activity of TiO_(2).Compared with other traditional coating materials,amorphous TiO_(2) has higher light refractive index,and realizes the suppression of the photocatalytic activity of TiO_(2) without introducing other substances,demonstrating greater application potential in TiO_(2) pigment coating field.The process is a gas-phase coating method,which is efficient,no waste water,and easy to scale up.This work shown the excellent property of interface engineering in improving pigment weatherability and can also provide guidance for the nanoparticle surface modification.展开更多
基金Item Sponsored by National Natural Science Foundation of China and Baosteel Group Corporation of China(50974149)
文摘Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1 226 and 1 312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders.
基金supported by the National Key Research and Development Program of China(2022YFC2904400)Guangxi Science and Technology Major Project(Gui Ke AA23023033)。
文摘As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated.
基金the Designated Funding for Winners of President’s Awards of Chinese Academy of Sciences(CAS,2006)financial supports from the National Natural Science Foundation of China(NSFC)under the Grant No.20221603 and 20706057
文摘Pseudo-Particle Modeling (PPM) is a particle method proposed by Ge and Li in 1996 [Ge, W., & Li, J. (1996). Pseudo-particle approach to hydrodynamics of particle-fluid systems, in M. Kwauk & J. Li (Eds.), Proceedings of the 5th international conference on drculating fluidized bed (pp. 260-265). Beijing: Science Press] and has been used to explore the microscopic mechanism in complex particle-fluid systems. But as a particle method, high computational cost remains a main obstacle for its large-scale application; therefore, parallel implementation of this method is highly desirable. Parallelization of two-dimensional PPM was carried out by spatial decomposition in this paper. The time costs of the major functions in the program were analyzed and the program was then optimized for higher efficiency by dynamic load balancing and resetting of particle arrays. Finally, simulation on a gas-solid fluidized bed with 102,400 solid particles and 1.8 × 10^7 pseudo-particles was performed successfully with this code, indicating its scalability in future applications.
文摘Hydrodynamic characteristics of fluidization in a conical or tapered bed differ from those in a columnar bed because the superficial velocity in the bed varies in the axial direction. Fixed and fluidized regions could coexist and sharp variations in pressure drop could occur, thereby giving rise to a noticeable pressure drop-flow rate hysteresis loop under incipient fluidization conditions. To explore these unique properties, several experiments were carried out using homogeneous, well-mixed, ternary mixtures with three dif- ferent particle sizes at varying composition in gas-solid conical fluidized beds with varying cone angles. The hydrodynamic characteristics determined include the minimum fluidization velocity, bed fluctuation, and bed expansion ratios. The dependence of these quantities on average particle diameter, mass fraction of the fines in the mixture, initial static bed height, and cone angle is discussed. Based on dimensional analysis and factorial design, correlations are developed using the system parameters, i.e. geometry of the bed (cone angle), particle diameter, initial static bed height, density of the solid, and superficial velocity of the fluidizing medium. Experimental values of minimum fluidization velocity, bed fluctuation, and bed expansion ratios were found to agree well with the developed correlations.
基金supported by the National Key Research and Development Program of China(2022YFB4100305).
文摘Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.
文摘We present a short retrospective review of the existing literature about the dynamics of(dry)granular matter under the effect of vibrations.The main objective is the development of an integrated resource where vital information about past findings and recent discoveries is provided in a single treatment.Special attention is paid to those works where successful synthetic routes to as-yet unknown phenomena were identified.Such landmark results are analyzed,while smoothly blending them with a history of the field and introducing possible categorizations of the prevalent dynamics.Although no classification is perfect,and it is hard to distillate general properties out of specific observations or realizations,two possible ways to interpret the existing results are defined according to the type of forcing or the emerging(ensuing)regime of motion.In particular,first results concerning the case where vibrations and gravity are concurrent(vertical shaking)are examined,then the companion situation with vibrations perpendicular to gravity(horizontal shaking)is described.Universality classes are introduced as follows:(1)Regimes where sand self-organizes leading to highly regular geometrical“pulsating”patterns(thin layer case);(2)Regimes where the material undergoes“fluidization”and develops an internal multicellular convective state(tick layers case);(3)Regimes where the free interface separating the sand from the overlying gas changes inclination or develops a kind a patterned configuration consisting of stable valleys and mountains or travelling waves;(4)Regimes where segregation is produced,i.e.,particles of a given size tend to be separated from the other grains(deep containers).Where possible,an analogy or parallelism is drawn with respect to the companion field of fluid-dynamics for which the assumption of“continuum”can be applied.
文摘This article presents further experimental results of the Magnetization-LAST mode in magnetically assisted gas-fluidized tapered beds, including external transverse magnetic field control of solid phase movement, central channel formation, spout depth and the pressure drop across the bed. Phase diagrams similar to those recently reported for the Magnetization-FIRST mode were also developed. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number pertinent to particle aggregate formation was applied to develop the scaling relationships.
基金grateful for financial support from the National Natural Science Foundation of China(Nos.22378405 and 51974287)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA29040100)the National Key Research and Development Program of China(No.2023YFC2908002).
文摘The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore,such as titanomagnetite.However,the defluidization of reduced iron particles with a high metallization degree at a high temperature will seriously affect the operation of fluidized bed reduction.Coupling the pre-oxidation enhancing reduction and the particle surface modification of titanomagnetite,the behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized bed reduction of titanomagnetite are systematically studied in this paper.Pre-oxidation treatment of titanomagnetite can significantly lower the critical stable reduction fluidization gas velocity to 0.17 m/s,which is reduced by 56%compared to that of titanomagnetite reduction without pre-oxidation,while achieving a metallization degree of>90%,Corresponding to the different reduction fluidization behaviors,three pre-oxidation operation regions have been divided,taking oxidation degrees of 26%and 86%as the boundaries.Focusing on the particle surface morphology evolution in the pre-oxidation-reduction process,the relationship between the surface morphology of pre-oxidized ore and the reduced iron with fluidization properties is built.The improving method of pre-oxidation on the reduction fluidization provides a novel approach to prevent defluidization by particle surface modification,especially for the fluidized bed reduction of poly-metallic iron ore.
基金supported by Shandong Provincial Natural Science Foundation (ZR2023MB038)National Natural Science Foundation of China (21808232 and 21978143)Financial support from the Qingdao University of Science and Technology
文摘The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.
基金financial supports from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21040400)the Innovation Academy for Green manufacture,the Chinese Academy of Sciences(IAGM-2019-A03)the National Natural Science Foundation of China(91834303)。
文摘Hydrodynamic features of gas-solid generalized fluidization can be well expressed in the form of phase diagrams,which are important for engineering design.Mesoscale structure presents almost universally in generalized fluidization and should be considered in such phase diagrams.However,current phase diagrams were mainly proposed for cocurrent upward flow according to experimental data or empirical correlations with homogeneous assumption.The energy-minimization multiscale(EMMS)model has shown the capability of capturing mesoscale structure in generalized fluidization,so EMMS-based phase diagrams of generalized fluidization were proposed in this article,which describe more reasonable global hydrodynamics over all regimes including the important engineering phenomena of choking and flooding.These characteristics were also found in discrete particle simulation under various conditions.For wider range of application,the typical hydrodynamic parameters of the phase diagrams were correlated to non-dimensional numbers reflecting the effects of material properties and operation conditions.This study thus shows a possible route to develop a unified phase diagram in the future.
基金supported by the China Ocean Mineral Resources Research&Development Program(DY125-15-T-08)the National Natural Science Foundation of China(21176026,21176242)。
文摘In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization characteristics in a gas-solid fluidized bed.The Euler-Euler two fluid model(TFM)approach based on the kinetic theory of granular flow(KTGF)and the standard k-epsilon turbulence model was employed in the numerical simulation by using ANSYS Fluent 15.0.The results showed that the orifice size and the orifice pitch of gas distributor had a significant influence on the flow characteristics in the gas-solid fluidized bed.With a decreasing orifice size and orifice pitch of gas distributor having the same opening area,the distributor pressure drop,the initial bubble size,and the height of dead zone just above the distributor were decreased,and the bed pressure drop was increased more than that of the larger orifice size and orifice pitch of distributors,the distribution of solid volume fraction was also more homogeneous for the smaller orifice size.
基金The authors gratefully acknowledge financial support by the National Natural Science Foundation of China-Xinjiang Joint Fund(U2003124)the National Natural Science Foundation of China(No.51974001)the University Outstanding Young Talents Funding Program(No.gxyq2019016).
文摘Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on the kinetics of fuidization reduction of iron ore powder under low-temperature conditions ranging from 783 to 903 K was investigated to describe the fluidization reduction rate of iron ore powder from three aspects:microstructure change,reaction limiting link,and apparent activation energy of the reaction,exploring their internal correlation.The experimental results revealed that in a temperature range of 783-813 K,the formation of a dense iron layer hindered the internal diffusion of reducing gas,resulting in relatively high gas diffusion resistance.In addition,due to the differences in limiting links and reaction pathways in the intermediate stage of reduction,the apparent activation energy of the reaction varied.The apparent activation energy of the reaction ranged from 23.36 to 89.13 kJ/mol at temperature ranging from 783 to 813 K,while it ranged from 14.30 to 68.34 kJ/mol at temperature ranging from 873 to 903 K.
文摘The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△Dbt)1/3√RgMQ combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data correlations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.
文摘Random characteristics of the dynamic heterogeneous structure in gas\|solid fluidization have been studied by reconstructing voidage time series. It is indicated that the dense phase, the dilute phase and the dense/dilute cycle elements show random dynamic behavior satisfying the so\|called Weibull distribution, three parameters of which change regularly with operating conditions.
基金supported by the National Natural Science Foundation of China(Nos.22375031,22202037,22472023)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ001,2412023QD019,2412024QD014)+1 种基金supported by grants from the seventh batch of Jilin Province Youth Science and Technology Talent Lifting Project(No.QT202305)Science and Technology Development Plan Project of Jilin Province,China(No.20240101192JC)。
文摘The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.
基金Project(2023JH3/10200010)supported by the Excellent Youth Natural Science Foundation of Liaoning Province,ChinaProject(XLYC2203167)supported by the Liaoning Revitalization Talents Program,China+2 种基金Project(RC231175)supported by the Mid-career and Young Scientific and Technological Talents Program of Shenyang,ChinaProject(2023A03003-2)supported by the Key Special Program of Xinjiang,ChinaProject(N2301026)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Nickel laterite ore is an important nickel-bearing mineral.Research on pre-heating and hydrogen pre-reduction in the pyrometallurgical process of nickel laterite ore is very limited,especially when using fluidized bed roasting.This study systematically explores the mechanisms of fluidized bed pre-heating treatment and hydrogen pre-reduction in the roasting process of saprolitic nickel laterite ore.According to single-factor experiment results,the appropriate pre-heating and pre-reduction conditions were a pre-heating temperature of 700℃,a pre-heating time of 30 min,a pre-reduction temperature of 700℃,a pre-reduction time of 30 min,and a hydrogen concentration of 80%.Then,the nickel metallization rate and iron metallization rate reached 90.56%and 41.31%,respectively.Various analytical and testing methods were employed to study the changes in phase composition,magnetism,surface element valence states,and microstructure of nickel laterite ore during fluidized pre-heating and pre-reduction.The study shows that hydrogen can achieve nickel reduction at relatively low temperatures.It was also found that pre-heating treatment of nickel laterite ore is beneficial.Pre-heating opens up the mineral structures of serpentine and limonite,allowing the reducing gas and nickel to interact quickly during the reduction process,enhancing the pre-reduction process.
基金National Key Research and Development Program of China(2021YFA1501302)the National Natural Science Foundation of China(22121004,22122808)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations and the Program of Introducing Talents of Discipline to Universities(BP0618007)for financial supportsupported by the XPLORER PRIZE.
文摘Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.
文摘For the treatment of the mixed flue gas desulfurization wastewater with high salinity by the biological fluidized bed process,the optimum temperature was 25-35℃,and the optimum hydraulic retention time was 10 h.When the influent quality was stable,the average concentration of COD,NH_(4)^(+)-N and TN in the inlet water was 210,11 and 16.3 mg/L,respectively,and their average concentration in the effluent was 54,0.32 and 4.09 mg/L,respectively.The treatment effect was good.When the incoming water quality of flue gas desulfurization wastewater fluctuated greatly,the effluent quality was still relatively stable after being treated by the biological fluidized bed,indicating that the biological fluidized bed process had a good ability to resist the impact of water quality in the treatment of high-salinity flue gas desulfurization wastewater.At the same time,the biological fluidized bed process provides a reference for high-salinity wastewater that is difficult to be biologically treated.
基金supported by the National Natural Science Foundation of China(52306131)the Natural Science Foundation of Jiangsu Province(BK20230847)+1 种基金the Key Project of the National Natural Science Foundation of China(52336005)the Open Project Program of State Key Laboratory of Low-carbon Smart Coalfired Power Generation and Ultra-clean Emission(D2024FK156).
文摘Pressurized oxy-fuel combustion is a next-generation and low-cost carbon capture technology with industrial application potential.This work presents an innovative research exploration-coupling coal pressurized fluidized bed oxy-fuel combustion technology with energy utilization of poultry manure as a renewable and carbon-neutral fuel,in order to capture CO_(2)and solve the problem of poultry manure treatment simultaneously.In this study,a stable co-combustion of coal and chicken manure in a laboratory-scale pressurized fluidized bed under typical oxy-fuel condition(30%O_(2)/70%CO_(2),i.e.,Oxy-30)is achieved.The key parameters including the combustion pressure(0.1-0.5 MPa)and chicken-manure proportion(0%to 100%)and their impacts on fundamental combustion efficiency,carbon conversion,nitrogen and sulfur pollutant emissions,and residue ash characteristics have been investigated.The result show that pressurization favors an increase in the CO_(2)enrichment concentration and fluidized bed combustion efficiency.During co-combustion under 0.1 and 0.3 MPa,the CO_(2)concentration in the flue gas is the highest when the chicken manure blending ratio(M_(pm))is 25%.Although the NO emissions fluctuate and even increase as Mpm increases,the co-combustion of coal and chicken manure exhibits a synergistic effect in reducing NO conversion rate(XNO).The effect of pressurization on reducing NO emission is significant,XNO at M_(pm)=25%decreasing from 15%to 5%as the pressure(P)increases from 0.1 to 0.5 MPa.As P increases from 0.1 to 0.5 MPa and Mpm increases from 0%to 50%,the SO_(2) emissions and conversion rates decrease.The self-desulfurization process plays an important role in the reduction of SO_(2) emissions during pressurized oxy-fuel co-combustion.The aim of this work is to advance the development and application of pressurized fluidized bed oxy-fuel co-combustion technology and promote a circular bioeconomy and carbon-free waste management for biomass derived from livestock manure.
基金supported by the National Natural Science Foundation of China(21808214)Research Project Supported by Shanxi Scholarship Council of China(2023-126)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20220013)。
文摘Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really uniform films.This work combining nanoparticle fluidization technology with atomic layer deposition(ALD) technology to achieve precise surface modification of a large number of micro-nano particles.First,we explored the fluidization characteristics of TiO_(2) nanoparticles in a home-made atmospheric fluidized bed ALD reactor(FB-ALD) to ensure the uniform fluidization of a large number of nanoparticles.Then TiCl_(4) and H_(2)O were used as precursors to deposit amorphous TiO_(2) films on the surface of TiO_(2) nanoparticles at 80℃ under atmospheric pressure,and the growth per cycle was about 0.109 nm per cycle.After 30 ALD cycles,the film thickness was about 3.1 nm,which could almost fully suppress the photocatalytic activity of TiO_(2).Compared with other traditional coating materials,amorphous TiO_(2) has higher light refractive index,and realizes the suppression of the photocatalytic activity of TiO_(2) without introducing other substances,demonstrating greater application potential in TiO_(2) pigment coating field.The process is a gas-phase coating method,which is efficient,no waste water,and easy to scale up.This work shown the excellent property of interface engineering in improving pigment weatherability and can also provide guidance for the nanoparticle surface modification.