期刊文献+
共找到298,776篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanisms of Pore-Grain Boundary Interactions Influencing Nanoindentation Behavior in Pure Nickel: A Molecular Dynamics Study
1
作者 Chen-Xi Hu Wu-Gui Jiang +1 位作者 Jin Wang Tian-Yu He 《Computers, Materials & Continua》 2026年第1期368-388,共21页
THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics(MD)simulations,with a particular focus on the novel interplay between c... THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics(MD)simulations,with a particular focus on the novel interplay between crystallographic orientation,grain boundary(GB)proximity,and pore characteristics(size/location).This study compares single-crystal nickel models along[100],[110],and[111]orientations with equiaxed polycrystalline models containing 0,1,and 2.5 nm pores in surface and subsurface configurations.Our results reveal that crystallographic anisotropy manifests as a 24.4%higher elastic modulus and 22.2%greater hardness in[111]-oriented single crystals compared to[100].Pore-GB synergistic effects are found to dominate the deformation behavior:2.5 nm subsurface pores reduce hardness by 25.2%through stress concentration and dislocation annihilation at GBs,whereas surface pores enable mechanical recovery via accelerated dislocation generation post-collapse.Additionally,size-dependent deformation regimes were identified,with 1 nm pores inducing negligible perturbation due to rapid atomic rearrangement,in contrast with persistent softening in 2.5 nm pores.These findings establish atomic-scale design principles for defect engineering in nickel-based aerospace components,demonstrating how crystallographic orientation,pore configuration,and GB interactions collectively govern nanoindentation behavior. 展开更多
关键词 Pure nickel NANOINDENTATION molecular dynamics PORE grain boundary
在线阅读 下载PDF
Ultrafast Sulfur Redox Dynamics Enabled by a PPy@N‑TiO_(2) Z‑Scheme Heterojunction Photoelectrode for Photo‑Assisted Lithium–Sulfur Batteries
2
作者 Fei Zhao Yibo He +6 位作者 Xuhong Li Ke Yang Shuo Chen Yuanzhi Jiang Xue‑Sen Wang Chunyuan Song Xuqing Liu 《Nano-Micro Letters》 2026年第3期445-462,共18页
Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implem... Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implementation remains a significant challenge.Herein,we construct a free-standing polymer–inorganic hybrid photoelectrode with a direct Z-scheme heterostructure to develop high-efficiency PALSBs.Specifically,polypyrrole(PPy)is in situ vapor-phase polymerized on the surface of N-doped TiO_(2) nanorods supported on carbon cloth(N-TiO_(2)/CC),thereby forming a well-defined p–n heterojunction.This architecture efficiently facilitates the carrier separation of photo-generated electron–hole pairs and significantly enhances carrier transport by creating a built-in electric field.Thus,the PPy@N-TiO_(2)/CC can simultaneously act as a photocatalyst and an electrocatalyst to accelerate the reduction and evolution of sulfur,enabling ultrafast sulfur redox dynamics,as convincingly validated by both theoretical simulations and experimental results.Consequently,the PPy@N-TiO_(2)/CC PALSB achieves a high discharge capacity of 1653 mAh g−1,reaching 98.7%of the theoretical value.Furthermore,5 h of photo-charging without external voltage enables the PALSB to deliver a discharge capacity of 333 mAh g−1,achieving dual-mode energy harvesting capabilities.This work successfully integrates solar energy conversion and storage within a rechargeable battery system,providing a promising strategy for sustainable energy storage technologies. 展开更多
关键词 Photo-assisted lithium-sulfur batteries Z-scheme heterojunction Electrocatalysis Photocatalysis Sulfur redox dynamics
在线阅读 下载PDF
Enabling Intrinsic Antiferroelectricity in Two-dimensional NbOCl_(2):Molecular Dynamics Simulations based on Deep Learning Interatomic Potential
3
作者 Jiawei Mao Yinglu Jia +2 位作者 Gaoyang Gou Shi Liu Xiao Cheng Zeng 《Chinese Physics Letters》 2026年第1期156-178,共23页
Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely orien... Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely oriented.Using NbOCl_(2) monolayer with competing ferroelectric(FE)and antiferroelectric(AFE)phases as a 2D material platform,we demonstrate the emergence of intrinsic antiferroelectricity in NbOCl_(2) monolayer under experimentally accessible shear strain,along with new functionality associated with electric field-induced AFE-to-FE phase transition.Specifically,the complex configuration space accommodating FE and AFE phases,polarization switching kinetics,and finite temperature thermodynamic properties of 2D NbOCl_(2) are all accurately predicted by large-scale molecular dynamics simulations based on deep learning interatomic potential model.Moreover,room temperature stable antiferroelectricity with low polarization switching barrier and one-dimensional collinear polarization arrangement is predicted in shear-deformed NbOCl_(2) monolayer.The transition from AFE to FE phase in 2D NbOCl_(2) can be triggered by a low critical electric field,leading to a double polarization–electric(P–E)loop with small hysteresis.A new type of optoelectronic device composed of AFE-NbOCl_(2) is proposed,enabling electric“writing”and nonlinear optical“reading”logical operation with fast operation speed and low power consumption. 展开更多
关键词 d monolayers local dipoles nonequivalent sublattices intrinsic antiferroelectricity two dimensional nbocl d antiferroelectricity experimentally accessible shear strainalong molecular dynamics simulations
原文传递
Mechanical sensing migrasomes attenuated chronic infectious bone destruction via controlling mitochondria DNA dynamics
4
作者 Meilian Cai Chenyang Xing +5 位作者 Peng Chen Shuai Lin Mingzhao Li Han Zhang Hu Zhao Ruili Yang 《Nano Research》 2026年第1期748-764,共17页
Mesenchymal stem cells(MSCs),which are mechanosensitive cells,mediate the cells crosstalk in response to mechanical force,thereby playing a crucial role in bone homeostasis.Migrasomes serve as an important mediator fo... Mesenchymal stem cells(MSCs),which are mechanosensitive cells,mediate the cells crosstalk in response to mechanical force,thereby playing a crucial role in bone homeostasis.Migrasomes serve as an important mediator for cellular communication.However,whether the mechanical stimulus regulates the biology and property of migrasomes on bone metabolism remains unknown.This study shows that mechanical stimulus could promote MSCs to synthesize and secrete migrasomes,which could significantly alleviate chronic infectious bone destruction in periodontal tissue by inhibiting osteoclastic differentiation of macrophage and reestablishing local immune microenvironment.Mechanistically,miR-29b-3p is more abundant in migrasomes from mechanical force stimulated MSCs than in control ones.MiR-29b-3p blocks the activation of pyrin domain containing protein 3(NLRP3)and mitochondrial DNA(mtDNA)release by directly targeting on Tet1.Thus,mechanical sensing migrasomes inhibit osteoclast differentiation to alleviate inflammation induced bone destruction.These findings reveal that the mechanical stimulus controls the formation and properties of migrasomes,which provides a new biotechnological strategy for chronic infectious bone destruction intervention. 展开更多
关键词 mechanical force migrasomes Tet1 NLR family pyrin domain containing protein 3(NLRP3)inflammasome mitochondrial DNA dynamics
原文传递
Mitochondrial dynamics dysfunction and neurodevelopmental disorders:From pathological mechanisms to clinical translation
5
作者 Ziqi Yang Yiran Luo +5 位作者 Zaiqi Yang Zheng Liu Meihua Li Xiao Wu Like Chen Wenqiang Xin 《Neural Regeneration Research》 2026年第5期1926-1946,共21页
Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Alt... Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Although these conditions differ in clinical presentation, they share fundamental pathological features that may stem from abnormal mitochondrial dynamics and impaired autophagic clearance, which contribute to redox imbalance and oxidative stress in neurons. This review aimed to elucidate the relationship between mitochondrial dynamics dysfunction and neurodevelopmental disorders. Mitochondria are highly dynamic organelles that undergo continuous fusion and fission to meet the substantial energy demands of neural cells. Dysregulation of these processes, as observed in certain neurodevelopmental disorders, causes accumulation of damaged mitochondria, exacerbating oxidative damage and impairing neuronal function. The phosphatase and tensin homolog-induced putative kinase 1/E3 ubiquitin-protein ligase pathway is crucial for mitophagy, the process of selectively removing malfunctioning mitochondria. Mutations in genes encoding mitochondrial fusion proteins have been identified in autism spectrum disorders, linking disruptions in the fusion-fission equilibrium to neurodevelopmental impairments. Additionally, animal models of Rett syndrome have shown pronounced defects in mitophagy, reinforcing the notion that mitochondrial quality control is indispensable for neuronal health. Clinical studies have highlighted the importance of mitochondrial disturbances in neurodevelopmental disorders. In autism spectrum disorders, elevated oxidative stress markers and mitochondrial DNA deletions indicate compromised mitochondrial function. Attention-deficit/hyperactivity disorder has also been associated with cognitive deficits linked to mitochondrial dysfunction and oxidative stress. Moreover, induced pluripotent stem cell models derived from patients with Rett syndrome have shown impaired mitochondrial dynamics and heightened vulnerability to oxidative injury, suggesting the role of defective mitochondrial homeostasis in these disorders. From a translational standpoint, multiple therapeutic approaches targeting mitochondrial pathways show promise. Interventions aimed at preserving normal fusion-fission cycles or enhancing mitophagy can reduce oxidative damage by limiting the accumulation of defective mitochondria. Pharmacological modulation of mitochondrial permeability and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, an essential regulator of mitochondrial biogenesis, may also ameliorate cellular energy deficits. Identifying early biomarkers of mitochondrial impairment is crucial for precision medicine, since it can help clinicians tailor interventions to individual patient profiles and improve prognoses. Furthermore, integrating mitochondria-focused strategies with established therapies, such as antioxidants or behavioral interventions, may enhance treatment efficacy and yield better clinical outcomes. Leveraging these pathways could open avenues for regenerative strategies, given the influence of mitochondria on neuronal repair and plasticity. In conclusion, this review indicates mitochondrial homeostasis as a unifying therapeutic axis within neurodevelopmental pathophysiology. Disruptions in mitochondrial dynamics and autophagic clearance converge on oxidative stress, and researchers should prioritize validating these interventions in clinical settings to advance precision medicine and enhance outcomes for individuals affected by neurodevelopmental disorders. 展开更多
关键词 autophagic clearance autism spectrum disorders cellular homeostasis fusion and fission mitochondrial dynamics MITOPHAGY neural regeneration neuronal energy metabolism neurodevelopmental disorders oxidative stress
暂未订购
Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics 被引量:7
6
作者 Zhang Yinghui Lan Xingying Gao Jinsen 《Petroleum Science》 SCIE CAS CSCD 2012年第4期535-543,共9页
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ... A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime. 展开更多
关键词 gas-solid flow circulating fluidized bed computational particle fluid dynamics modeling HYDROdynamics
原文传递
Decarburization Thermodynamics of High-Carbon Ferromanganese Powders During Gas-Solid Fluidization Process 被引量:7
7
作者 GUO Li-na CHEN Jin ZHANG Meng LIANG Min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第5期1-8,共8页
Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, hig... Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1 226 and 1 312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders. 展开更多
关键词 gas-solid fluidization high carbon ferromanganese powders gas decarbonizer solid-phase decarburization
原文传递
Reversible encapsulation tailored interfacial dynamics for boosting the water-gas shift performance 被引量:1
8
作者 Nanfang Tang Qinghao Shang +12 位作者 Shuai Chen Yuxia Ma Qingqing Gu Lu Lin Qike Jiang Guoliang Xu Chuntian Wu Bing Yang Zhijie Wu Hui Shi Jian Liu Wenhao Luo Yu Cong 《Chinese Journal of Catalysis》 2025年第1期394-403,共10页
Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare ... Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis. 展开更多
关键词 Interfacial dynamics HYDROXYLS Water-gas shiftreaction In-situspectroscopy
在线阅读 下载PDF
Single-cell transcriptomics reveals the cellular dynamics of hexafluoropropylene oxide dimer acid in exerting mouse male reproductive toxicity 被引量:1
9
作者 Xupeng Zang Yongzhong Wang +6 位作者 Lei Jiang Yuhao Qiu Yue Ding Shengchen Gu Gengyuan Cai Ting Gu Linjun Hong 《Journal of Animal Science and Biotechnology》 2025年第3期1073-1091,共19页
Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.Howeve... Background Hexafluoropropylene oxide dimer acid(GenX),a substitute for per-and polyfluoroalkyl substances,has been widely detected in various environmental matrices and foods recently,attracting great attention.However,a systematic characterization of its reproductive toxicity is still missing.This study aims to explore the male reproductive toxicity caused by GenX exposure and the potential cellular and molecular regulatory mechanisms behind it.Results Normally developing mice were exposed to GenX,and testicular tissue was subsequently analyzed and validated using single-cell RNA sequencing.Our results revealed that GenX induced severe testicular damage,disrupted the balance between undifferentiated and differentiated spermatogonial stem cells,and led to strong variation in the cellular dynamics of spermatogenesis.Furthermore,GenX exposure caused global upregulation of testicular somatic cellular inflammatory responses,increased abnormal macrophage differentiation,and attenuated fibroblast adhesion,disorganizing the somatic-germline interactions.Conclusions In conclusion,this study revealed complex cellular dynamics and transcriptome changes in mouse testis after GenX exposure,providing a valuable resource for understanding its reproductive toxicity. 展开更多
关键词 Cellular dynamics GenX Reproductive toxicity Single-cell RNA sequencing TESTIS
暂未订购
Experimental Study on the Coupling Dynamics of Metal Jet,Waves,and Bubble During Underwater Explosion of a Shaped Charge 被引量:1
10
作者 Yu Tian A-Man Zhang +1 位作者 Liu-Yi Xu Fu-Ren Ming 《Engineering》 2025年第7期168-187,共20页
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ... Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation. 展开更多
关键词 Shaped charge Underwater explosion Metal jet WAVES BUBBLE Coupling dynamics
在线阅读 下载PDF
Exploitation of temporal dynamics and synaptic plasticity in multilayered ITO/ZnO/IGZO/ZnO/ITO memristor for energy-efficient reservoir computing 被引量:1
11
作者 Muhammad Ismail Seungjun Lee +2 位作者 Maria Rasheed Chandreswar Mahata Sungjun Kim 《Journal of Materials Science & Technology》 2025年第32期37-52,共16页
As the demand for advanced computational systems capable of handling large data volumes rises,nano-electronic devices,such as memristors,are being developed for efficient data processing,especially in reservoir comput... As the demand for advanced computational systems capable of handling large data volumes rises,nano-electronic devices,such as memristors,are being developed for efficient data processing,especially in reservoir computing(RC).RC enables the processing of temporal information with minimal training costs,making it a promising approach for neuromorphic computing.However,current memristor devices of-ten suffer from limitations in dynamic conductance and temporal behavior,which affects their perfor-mance in these applications.In this study,we present a multilayered indium-tin-oxide(ITO)/ZnO/indium-gallium-zinc oxide(IGZO)/ZnO/ITO memristor fabricated via radiofrequency sputtering to explore its fil-amentary and nonfilamentary resistive switching(RS)characteristics.High-resolution transmission elec-tron microscopy confirmed the polycrystalline structure of the ZnO/IGZO/ZnO active layer.Dual-switching modes were demonstrated by controlling the current compliance(I_(CC)).In the filamentary mode,the memristor exhibited a large memory window(10^(3)),low-operating voltages(±2 V),excellent cycle-to-cycle stability,and multilevel switching with controlled reset-stop voltages,making it suitable for high-density memory applications.Nonfilamentary switching demonstrated stable on/off ratios above 10,en-durance up to 102 cycles,and retention suited for short-term memory.Key synaptic behaviors,such as paired-pulse facilitation(PPF),post-tetanic potentiation(PTP),and spike-rate dependent plasticity(SRDP)were successfully emulated by modulating pulse amplitude,width,and interval.Experience-dependent plasticity(EDP)was also demonstrated,further replicating biological synaptic functions.These tempo-ral properties were utilized to develop a 4-bit reservoir computing system with 16 distinct conductance states,enabling efficient information encoding.For image recognition tasks,convolutional neural net-work(CNN)simulations achieved a high accuracy of 98.45%after 25 training epochs,outperforming the accuracy achieved following artificial neural network(ANN)simulations(87.79%).These findings demon-strate that the multilayered memristor exhibits high performance in neuromorphic systems,particularly for complex pattern recognition tasks,such as digit and letter classification. 展开更多
关键词 MEMRISTORS Temporal dynamics Synaptic plasticity Reservoir computing Neuromorphic systems Image recognition
原文传递
Smart cities,smart systems:A comprehensive review of system dynamics model applications in urban studies in the big data era 被引量:2
12
作者 Gift Fabolude Charles Knoble +1 位作者 Anvy Vu Danlin Yu 《Geography and Sustainability》 2025年第1期25-36,共12页
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ... This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models. 展开更多
关键词 Urban sustainability Smart cities System dynamics models Big data analytics Urban system complexity Data-driven urbanism
在线阅读 下载PDF
Recent advancements of nonlinear dynamics in mode coupled microresonators:a review 被引量:1
13
作者 Xuefeng WANG Zhan SHI +3 位作者 Qiqi YANG Yuzhi CHEN Xueyong WEI Ronghua HUAN 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期209-232,共24页
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup... Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field. 展开更多
关键词 mode coupling micro-electro-mechanical system(MEMS)resonator nonlinear dynamics
在线阅读 下载PDF
Efficient and Stable Perovskite Solar Cells and Modules Enabled by Tailoring Additive Distribution According to the Film Growth Dynamics
14
作者 Mengen Ma Cuiling Zhang +5 位作者 Yujiao Ma Weile Li Yao Wang Shaohang Wu Chong Liu Yaohua Mai 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期387-400,共14页
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces... Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air. 展开更多
关键词 Gas quenching Additive distribution Buried passivation Blade coating Crystallization dynamics
在线阅读 下载PDF
Discovery of selective HDAC6 inhibitors driven by artificial intelligence and molecular dynamics simulation approaches 被引量:1
15
作者 Xingang Liu Hao Yang +10 位作者 Xinyu Liu Minjie Mou Jie Liu Wenying Yan Tianle Niu Ziyang Zhang He Shi Xiangdong Su Xuedong Li Yang Zhang Qingzhong Jia 《Journal of Pharmaceutical Analysis》 2025年第8期1860-1872,共13页
Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor ... Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold. 展开更多
关键词 Artificial intelligence Virtual screening Compound-protein interaction Molecular dynamic simulation Selective HDAC6 inhibitor
暂未订购
Applications of molecular dynamics simulation in studying shale oil reservoirs at the nanoscale:Advances,challenges and perspectives 被引量:1
16
作者 Lu Wang Yi-Fan Zhang +6 位作者 Run Zou Yi-Fan Yuan Rui Zou Liang Huang Yi-Sheng Liu Jing-Chen Ding Zhan Meng 《Petroleum Science》 2025年第1期234-254,共21页
The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic e... The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs. 展开更多
关键词 Molecular dynamics Shale oil reservoirs NANOPORES Enhanced oil recovery Fluid flow behavior Shale oil occurrence
原文传递
Efficient and Stable Photoassisted Lithium‑Ion Battery Enabled by Photocathode with Synergistically Boosted Carriers Dynamics
17
作者 Zelin Ma Shiyao Wang +13 位作者 Zhuangzhuang Ma Juan Li Luomeng Zhao Zhihuan Li Shiyuan Wang Yazhou Shuang Jiulong Wang Fang Wang Weiwei Xia Jie Jian Yibo He Junjie Wang Pengfei Guo Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期440-454,共15页
Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.P... Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals.When employed in PLIBs,it was found effective for synchronously enhanced photocharge separation and transport in light charging process.Additionally,experimental photon spectroscopy,finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO_(2),as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact.Benefiting from these merits,several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set,including the capacity of 276 mAh g^(−1) at 0.2 A g^(−1) under illumination,photoconversion efficiency of 1.276%at 3 A g^(−1),less capacity and Columbic efficiency loss even through 200 cycles.These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems. 展开更多
关键词 Photoassisted lithium-ion batteries Bulk heterojunction Carrier dynamics TiO2 nanofiber Plasmonic metal nanocrystals
在线阅读 下载PDF
Active species in carbon nanotube nucleation from acetylene:Insights from nanoreactor molecular dynamics
18
作者 LI Luotong LEI Tingyu +3 位作者 BAI Jiawei LIU Xingchen TENG Botao WEN Xiaodong 《燃料化学学报(中英文)》 北大核心 2025年第12期1843-1852,共10页
Carbon nanotube formation exemplifies atomically precise self-assembly,where atomic interactions dynamically engineer nanoscale architectures with emergent properties that transcend classical material boundaries.Howev... Carbon nanotube formation exemplifies atomically precise self-assembly,where atomic interactions dynamically engineer nanoscale architectures with emergent properties that transcend classical material boundaries.However,elucidating the transient molecular intermediates remains a critical mechanistic frontier.This study investigates the atomic-scale nucleation process of single-walled carbon nanotubes(SWCNTs)from acetylene on iron(Fe)clusters,utilizing GFN(-x)TB-based nanoreactor molecular dynamics simulations.The simulations reveal a consistent nucleation pathway,regardless of iron cluster size(Fe_(13),Fe_(38),Fe_(55)),where the chemisorption and dissociation of acetylene molecules on the Fe clusters lead to the formation of C_(2)H and C_(2)intermediates.These species then undergo oligomerization,initiating the growth of carbon chains.As the chains cross-link and cyclize,five-membered carbon rings are preferentially formed,which eventually evolve into six-membered rings and more complex sp2-hybridized carbon networks,resembling the cap structures of nascent SWCNTs.Although the nucleation mechanism remains similar across all cluster sizes,larger clusters show enhanced catalytic activity,leading to higher molecular weight hydrocarbons and more extensive carbocyclic networks due to their higher density of active sites per reacting molecule.Crucially,the study highlights the role of C_(2)H as the key active species in the carbon network formation process.These findings offer critical insights into the initial stages of SWCNT nucleation,contributing to a deeper understanding of the mechanisms driving SWCNT growth and guiding the development of optimized synthetic strategies. 展开更多
关键词 single-walled carbon nanotubes molecular dynamics simulation nucleation mechanism acetylene dissociation
在线阅读 下载PDF
Time-resolved Electroluminescence of Charge Carrier Dynamics in Multiple-emitting-layer White QLEDs with Polyethyleneimine Interlayers
19
作者 YAN Shanshan WANG Shen +2 位作者 LIANG Wencheng LIU Weiwei KONG Youchao 《发光学报》 北大核心 2025年第10期1851-1861,共11页
The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs b... The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs. 展开更多
关键词 white QLEDs multiple emitting layers TrEL spectra charge carrier dynamics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部