The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Cova...The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.展开更多
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention...Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.展开更多
The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic s...The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.展开更多
Pneumatic conveying technology,as an efficient material transportation method,has been widely used in various industrial fields.To study the powder transportation in horizontal ash conveying pipes,this study relies on...Pneumatic conveying technology,as an efficient material transportation method,has been widely used in various industrial fields.To study the powder transportation in horizontal ash conveying pipes,this study relies on the Computational Particle Fluid Dynamics(CPFD)numerical method.The characteristics of the gas-solid two-phase flow under continuous air supply conditions are analyzed,and the effects on particle movement of factors such as feed port spacing,inlet air velocity,and the number of discharge ports are explored accordingly.The research results show that when the inlet velocity is 5 m/s,adjacent discharged particles come into contact after 8 s.As the inlet air velocity increases,the contact time between adjacent discharge ports is shortened.When the feed port spacing increases from 0.5 to 2 m,the dust accumulation thickness decreases by about 0.6 times.Additionally,when the spacing reaches a certain value,the rate of decrease in dust accumulation thickness begins to diminish.展开更多
The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and i...The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and improve the efficiency with which crushed material is discharged,first,the main structural parameters influencing the airflow in the crusher are discussed.Then,the coupled gas-solidflowfield in the straw crusher is numerically calculated through solution of the Navier-Stokes equations and application of the discrete element method(DEM).Finally,the discharge performance index of the crusher is examined through detailed analysis of the crushed material dynamics.Additionally,a multi-island genetic algorithm is used to optimize the structure and operational factors that have significant effects on the discharge performance.With optimization,the accumulation rate of crushed materials in the bottom region of the straw crusher decreases by 20.08%,and the massflow rate at the discharge outlet increases by 11.63%.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analys...Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.展开更多
The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of r...The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.展开更多
In this paper,the gas and seed flow characters in the air-blowing seed metering device are investigated by using the coupled computational fluid dynamics and discrete element method(CFD-DEM)in three dimensions(3D).The...In this paper,the gas and seed flow characters in the air-blowing seed metering device are investigated by using the coupled computational fluid dynamics and discrete element method(CFD-DEM)in three dimensions(3D).The method of establishing boundary model based on the computer-aided design(CAD)drawing,has been used to build the boundary model of seed metering device.The 3D laser scanning technique and multi-element method are adopted to establish the particle model.Through a combined numerical and experimental effort,using 3D CFD-DEM software,which is based on the in-house codes,the mechanisms governing the gas and solid dynamic behaviors in the seed metering device have been studied.The gas velocity field and the effect of different rotational speeds and air pressures on the seeding performance and particle velocity have been studied,similar agreements between numerical and experimental results are gained.This reveals that the 3D CFD-DEM model established is able to predict the performance of the air-blowing seed metering device.It can be used to design and optimize the air-blowing seed metering device and other similar agriculture devices.展开更多
Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, hig...Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1 226 and 1 312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders.展开更多
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ...A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.展开更多
A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of gr...A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of granular flow. The simulations by Eulerian two-fluid model (TFM) were compared with the corresponding results by discrete element method (DEM) and experiments. It was showed that TFM simulated results were in reasonable agreement with the experimental and DEM simulated results. Based on TFM simulations, gas-solid flow pattern, gas velocity, particle velocity and the static pressure under different driving jet velocity, backpressure and convergent section angle were obtained. The results showed that the time average axial gas velocity sharply decreased and then slightly increased to a constant value in the horizontal conveying pipe. The time average axial particle velocity increased initially and then decreased, but in the outlet region of the convergent section the particle velocity remarkably increased once more to the maximal value. As a whole, the static pressure distribution change trends were found to be independent on driving gas velocity, backpressure and convergent section angle. However, the static pressure increased with increase of convergent section angle and gas jet velocities. The difference of static pressure to backpressure increased with increasing backpressure.展开更多
A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide...A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal.展开更多
A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical ...A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans.展开更多
Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady o...Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions.展开更多
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,...Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model.展开更多
A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctua...A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.展开更多
Two-dimensional unsteady cocurrent upward gas-solid flows in the vertical channel are simulated and the mechanisms of particles accumulation are analyzed according to the simulation results. The gaseous turbulent flow...Two-dimensional unsteady cocurrent upward gas-solid flows in the vertical channel are simulated and the mechanisms of particles accumulation are analyzed according to the simulation results. The gaseous turbulent flow is simulated using the large eddy simulation (LES) method and the solid phase is treated using the Lagrangian approach, and the motion of the gas and particles are coupled. The formation of clusters and the accumulation of particles near the wall in dense gas-solid flows are demonstrated even if the particle-particle collisions were ignored. It is found that a cluster grows up by capturing the particles in the dilute phase due to its lower vertical velocity. By this way the small size clusters can evolve to large-scale clusters. Due to the interaction of gas and particles, the large-scale vortices appear in the channel and the boundary layer separates from the wall, which results in very high particle concentration in the near wall region and a very large-scale cluster formed near the separation point.展开更多
This study is devoted to gas-solid mass transfer behavior inheterogeneous two-phase flow. Experiments were carried out in a coldcirculating fluidized bed of 3.0 m in height and 72 mm in diameterwith naphthalene partic...This study is devoted to gas-solid mass transfer behavior inheterogeneous two-phase flow. Experiments were carried out in a coldcirculating fluidized bed of 3.0 m in height and 72 mm in diameterwith naphthalene particles. Axial and radial distributions ofsublimated naphthalene concentration in air were measured with an on-line concentration monitoring system HP GC-MS. Mass transfercoefficients were obtained under various operating conditions,showing that heterogeneous flow structure strongly influences theaxial and radial profiles of mass transfer coefficients.展开更多
Wind turbine blades are inevitable to be eroded in wind-sand environment,so it is crucial to identify the flow conditions under which the erosion happens.Here,the effect of the sand diameter on wind turbine airfoil is...Wind turbine blades are inevitable to be eroded in wind-sand environment,so it is crucial to identify the flow conditions under which the erosion happens.Here,the effect of the sand diameter on wind turbine airfoil is first investigated.When the sand diameter is less than 3μm,the sands will bypass the airfoil and no erosion occurs.When the sand diameter is larger than 4μm,the sand grains collide with the airfoil and the erosion happens.Thus,there must be a critical sand diameter between 3μm and 4μm,at which the erosion is initiated on the airfoil surface.To find out this critical value,aparticle Stokes number is introduced here.According to the range of the critical sand diameter mentioned above,the critical value of particle Stokes number is reasonably assumed to be between 0.007 8and 0.014.The assumption is subsequently validated by other four factors influecing the erosion,i.e.,the angle of attack,relative thickness of the airfoil,different series airfoil,and inflow velocity.Therefore,the critical range of Stokes number has been confirmed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22375031,22202037,22472023)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ001,2412023QD019,2412024QD014)+1 种基金supported by grants from the seventh batch of Jilin Province Youth Science and Technology Talent Lifting Project(No.QT202305)Science and Technology Development Plan Project of Jilin Province,China(No.20240101192JC)。
文摘The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.
基金supported by the National Key Research and Development Program of China(2022YFB4100305).
文摘Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.
文摘The direct conversion of atmospheric CO_(2) into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle.In this study,we established an electro-assisted photocatalytic system with dual compartments and interfaces,and coated Ag nanoparticles on the titanium nanotube arrays(TNTAs)by polydopamine modification.In the absence of sacrificial agent and alkali absorption liquid conditions,the stable,efficient and highly selective conversion of CO_(2) to CO at the gas-solid interface in ambient air was realized by photoelectric synergy.Specifically,with the assistance of potential,the CO formation rates reached 194.9μmol h^(−1) m^(−2) and 103.9μmol h^(−1) m^(−2) under ultraviolet and visible light irradiation,respectively;the corresponding CO_(2) conversion rates in ambient air were 30%and 16%,respectively.The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect.Additionally,the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate.This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.
文摘Pneumatic conveying technology,as an efficient material transportation method,has been widely used in various industrial fields.To study the powder transportation in horizontal ash conveying pipes,this study relies on the Computational Particle Fluid Dynamics(CPFD)numerical method.The characteristics of the gas-solid two-phase flow under continuous air supply conditions are analyzed,and the effects on particle movement of factors such as feed port spacing,inlet air velocity,and the number of discharge ports are explored accordingly.The research results show that when the inlet velocity is 5 m/s,adjacent discharged particles come into contact after 8 s.As the inlet air velocity increases,the contact time between adjacent discharge ports is shortened.When the feed port spacing increases from 0.5 to 2 m,the dust accumulation thickness decreases by about 0.6 times.Additionally,when the spacing reaches a certain value,the rate of decrease in dust accumulation thickness begins to diminish.
基金supported by Basic scientific research funding project of universities directly under the Inner Mongolia Autonomous Region(Grant No.JY20230077)the Natural Science Foundation of Inner Mongolia Funded Project(Grant No.2022FX01)+1 种基金Inner Mongolia Nature Joint Science Fund(Grant No.2023LHMS05023)Qiqihar University Educational Science Research Project(Grant No.GJQTYB202320).
文摘The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and improve the efficiency with which crushed material is discharged,first,the main structural parameters influencing the airflow in the crusher are discussed.Then,the coupled gas-solidflowfield in the straw crusher is numerically calculated through solution of the Navier-Stokes equations and application of the discrete element method(DEM).Finally,the discharge performance index of the crusher is examined through detailed analysis of the crushed material dynamics.Additionally,a multi-island genetic algorithm is used to optimize the structure and operational factors that have significant effects on the discharge performance.With optimization,the accumulation rate of crushed materials in the bottom region of the straw crusher decreases by 20.08%,and the massflow rate at the discharge outlet increases by 11.63%.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
基金supported by Beijing Natural Science Foundation (8164063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050100)~~
文摘Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.
基金Science and Technology on Electronic Test and Measurement Laboratory(No.9140C12040515X)
文摘The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.
基金The authors would like to express appreciation for the support of Australia Research Council(IH140100035)Nature Science Foundation of China(51675218)+1 种基金Doctor Starting Foundation of Jiangxi University of Science and Technology(JXXJBS17078)Science and Technology Project of the Education Department of Jiangxi Province(GJJ180426).
文摘In this paper,the gas and seed flow characters in the air-blowing seed metering device are investigated by using the coupled computational fluid dynamics and discrete element method(CFD-DEM)in three dimensions(3D).The method of establishing boundary model based on the computer-aided design(CAD)drawing,has been used to build the boundary model of seed metering device.The 3D laser scanning technique and multi-element method are adopted to establish the particle model.Through a combined numerical and experimental effort,using 3D CFD-DEM software,which is based on the in-house codes,the mechanisms governing the gas and solid dynamic behaviors in the seed metering device have been studied.The gas velocity field and the effect of different rotational speeds and air pressures on the seeding performance and particle velocity have been studied,similar agreements between numerical and experimental results are gained.This reveals that the 3D CFD-DEM model established is able to predict the performance of the air-blowing seed metering device.It can be used to design and optimize the air-blowing seed metering device and other similar agriculture devices.
基金Item Sponsored by National Natural Science Foundation of China and Baosteel Group Corporation of China(50974149)
文摘Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1 226 and 1 312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders.
基金support by the National Basic Research Program (Grant No. 2010CB226906,and 2012CB215000)
文摘A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.
基金Supported by the National High Technology Research and Development Program of China (2006AA05A103), the National Natural Science Foundation of China (50706007), Foundation of Graduate Creative Program of Jiangsu (CX08B-060Z), and the Foundation for Excellent Ph.D. Thesis of Southeast University. ACKNOWLEDGEMENTS The authors also expressed sincere gratitude to Professors M. Horio, B. Leckner, A. Kane and E.J. Anthony for constructive advice during their visiting period in Southeast University, which contributed to our research.
文摘A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of granular flow. The simulations by Eulerian two-fluid model (TFM) were compared with the corresponding results by discrete element method (DEM) and experiments. It was showed that TFM simulated results were in reasonable agreement with the experimental and DEM simulated results. Based on TFM simulations, gas-solid flow pattern, gas velocity, particle velocity and the static pressure under different driving jet velocity, backpressure and convergent section angle were obtained. The results showed that the time average axial gas velocity sharply decreased and then slightly increased to a constant value in the horizontal conveying pipe. The time average axial particle velocity increased initially and then decreased, but in the outlet region of the convergent section the particle velocity remarkably increased once more to the maximal value. As a whole, the static pressure distribution change trends were found to be independent on driving gas velocity, backpressure and convergent section angle. However, the static pressure increased with increase of convergent section angle and gas jet velocities. The difference of static pressure to backpressure increased with increasing backpressure.
基金Projects(50921002, 50774084) supported by the National Natural Science Foundation of ChinaProject(2007AA05Z318) supported by the National High-tech Research and Development Program of China+1 种基金Project(BK2010002) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject(20100480473) supported by the China Postdoctoral Science Foundation
文摘A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal.
基金financially supported by the State Key Research Development Program of China (Nos. 2016YFC0801402, 2016YFC0600708)the National Natural Science Foundation of China (Nos. 51474219, 51304213)
文摘A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans.
基金supported by the Zhejiang Province Key Research and Development Plan(2021C03152)Zhoushan Science and Technology Project(2021C21011)+1 种基金Industrial Project of Public Technology Research of Zhejiang Province Science and Technology Department(LGG18E040001)Scientific Research Project of Zhejiang Province Education Department(Y20173854)
文摘Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions.
文摘Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model.
基金support from National Basic Research Program of China(No.2009CB219801)National Natural Science Foundation of China(No.20976191)+1 种基金International Cooperative Program of Guizhou Province([2009]700110)Program for New Century Excellent Talents in University(NCET-09-0342)
文摘A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.
基金Partially supported by the National Natural Science Foundation of China (No.50376028) and jointly by NSFC and PetroChina(No.20490200).
文摘Two-dimensional unsteady cocurrent upward gas-solid flows in the vertical channel are simulated and the mechanisms of particles accumulation are analyzed according to the simulation results. The gaseous turbulent flow is simulated using the large eddy simulation (LES) method and the solid phase is treated using the Lagrangian approach, and the motion of the gas and particles are coupled. The formation of clusters and the accumulation of particles near the wall in dense gas-solid flows are demonstrated even if the particle-particle collisions were ignored. It is found that a cluster grows up by capturing the particles in the dilute phase due to its lower vertical velocity. By this way the small size clusters can evolve to large-scale clusters. Due to the interaction of gas and particles, the large-scale vortices appear in the channel and the boundary layer separates from the wall, which results in very high particle concentration in the near wall region and a very large-scale cluster formed near the separation point.
基金Supported by the National Excellent Youth Foundation of China (No. 29425006).
文摘This study is devoted to gas-solid mass transfer behavior inheterogeneous two-phase flow. Experiments were carried out in a coldcirculating fluidized bed of 3.0 m in height and 72 mm in diameterwith naphthalene particles. Axial and radial distributions ofsublimated naphthalene concentration in air were measured with an on-line concentration monitoring system HP GC-MS. Mass transfercoefficients were obtained under various operating conditions,showing that heterogeneous flow structure strongly influences theaxial and radial profiles of mass transfer coefficients.
基金supported partly by the National Basic Research Program of China(″973″Program)(No.2014CB046201)the National Natural Science Foundation of China(No.51166009)+4 种基金the National High Technology Research and Development Program of China(No.2012AA052900)the Natural Science Foundation of Gansu ProvinceChina(No.1308RJZA283145RJZA059)the Gansu Province University Scientific Research ProjectChina(No.2013A-026)
文摘Wind turbine blades are inevitable to be eroded in wind-sand environment,so it is crucial to identify the flow conditions under which the erosion happens.Here,the effect of the sand diameter on wind turbine airfoil is first investigated.When the sand diameter is less than 3μm,the sands will bypass the airfoil and no erosion occurs.When the sand diameter is larger than 4μm,the sand grains collide with the airfoil and the erosion happens.Thus,there must be a critical sand diameter between 3μm and 4μm,at which the erosion is initiated on the airfoil surface.To find out this critical value,aparticle Stokes number is introduced here.According to the range of the critical sand diameter mentioned above,the critical value of particle Stokes number is reasonably assumed to be between 0.007 8and 0.014.The assumption is subsequently validated by other four factors influecing the erosion,i.e.,the angle of attack,relative thickness of the airfoil,different series airfoil,and inflow velocity.Therefore,the critical range of Stokes number has been confirmed.