Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors ...Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors and rock bursts observed as transient states of air parameters in mining headings,are usually generated as a result of a change in the geometry of headings and the release of considerable amounts of gases. Particular significance is attributed to transient states caused by disasters, which are often accompanied by rapid incidents, presenting threats to the life and health of the underground crew.In Polish mining there are known examples of transient states of air parameters recorded during gasdynamic phenomena, e.g. tremors and rock bursts. The paper presents the case studies of rapid seismic incidents to show how records in mine monitoring systems broaden the knowledge about the transient states of air parameters in mining headings generated because of them.展开更多
This research presents a numerical simulation methodology for optimizing circular composite overlays’dimensions and pressure characteristics with orthotropic mechanical properties,specifically,for metal conduits with...This research presents a numerical simulation methodology for optimizing circular composite overlays’dimensions and pressure characteristics with orthotropic mechanical properties,specifically,for metal conduits with temperature-dependent elastoplastic behavior.The primary objective of the proposed method is to prevent crack propagation during pressure surges from operational to critical levels.This study examines the“Beineu-Bozoy-Shymkent”steel gas conduit,examining its performance across a temperature range of−40 to+50℃.This work builds on prior research on extended avalanche destruction in steel gas conduits and crack propagation prevention techniques.Theanalysis was conducted using a dynamic finite-element approach with the ANSYS-19.2/ExplicitDynamics software.Simulations of unprotected conduits revealed that increasing gas-dynamic pressure can convert a partial-depth crack into a through-crack,extending longitudinally to approximately seven times its initial length.Notably,at T=+50℃,the developed crack length was 1.2%longer than that at T=−40℃,highlighting the temperature sensitivity of crack progression.The modeling results indicate that crack propagation can be effectively controlled using a circular composite overlay with a thickness between 37.5%and 50%of the crack depth and a length approximately five times that of the initial crack,centered symmetrically over the crack.In addition,preliminary stress analysis indicated that limiting the overlay-induced pressure to 5%of the operational pressure effectively arrested crack growth without generating significant stress concentrations near the overlay boundaries,thereby preventing conduit integrity.展开更多
The article focuses on a theoretical and experimental framework for the quantification of interaction between nonlinear geomechnical and physicochemical processes in high-stress coal-bearing rock mass during mining un...The article focuses on a theoretical and experimental framework for the quantification of interaction between nonlinear geomechnical and physicochemical processes in high-stress coal-bearing rock mass during mining under high seismic risk due to large-scale blasting and earthquakes,as well as because of structural and temperature effects.The tests were aimed to examine and study comprehensively the piston mechanism of gas exchange and mass transfer processes,revealed recently at the Institute of Mining,SB RAS,as well as to explain the fact that the earthquake-induced low-velocity(quasi-meter range)pendulum waves(velocity to 1 m/s and frequency of 0.5–5 Hz)could stimulate an increase in the gas content in coal mines.In order to perform laboratory investigation at the Institute of Mining SB RAS,special-purpose stand for analyzing gas exchange and mass transfer processes in coal-bearing geomaterials under various thermodynamic conditions(P,V,T)and gas composition was constructed in cooperation with the Institute of Semiconductors Physics SB RAS.Matching of air flow rate with compression pressures allowed to obtain relations showing that air flow rate increases at the uncertain time interval under the increasing of the compression pressure.The same measurements was carried out with another gases such as Hydrogen H_(2),Helium He,methane CH_(4),carbon dioxide CO_(2) and carbon oxide CO.The laboratory tests aimed to detailed investigation of the previously revealed“piston mechanism”of gas exchange and mass transfer processes in the coal specimens and their quantitative description in terms of theory of the pendulum waves were carried in the first time.Consequently,there are some arguments for the testing of the opportunity of quantitative description of the“piston mechanism”related to gas exchange and mass transfer processes in the scale of coal mines.It is relevant when pendulum waves induced by powerful earthquakes and technical blasting reaches the mine.展开更多
基金the implementation of task 2 of the subject “The aspects of environment and the safety of conducting underground work” of the statutory research of IMG PAN in the year 2018
文摘Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors and rock bursts observed as transient states of air parameters in mining headings,are usually generated as a result of a change in the geometry of headings and the release of considerable amounts of gases. Particular significance is attributed to transient states caused by disasters, which are often accompanied by rapid incidents, presenting threats to the life and health of the underground crew.In Polish mining there are known examples of transient states of air parameters recorded during gasdynamic phenomena, e.g. tremors and rock bursts. The paper presents the case studies of rapid seismic incidents to show how records in mine monitoring systems broaden the knowledge about the transient states of air parameters in mining headings generated because of them.
基金supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘This research presents a numerical simulation methodology for optimizing circular composite overlays’dimensions and pressure characteristics with orthotropic mechanical properties,specifically,for metal conduits with temperature-dependent elastoplastic behavior.The primary objective of the proposed method is to prevent crack propagation during pressure surges from operational to critical levels.This study examines the“Beineu-Bozoy-Shymkent”steel gas conduit,examining its performance across a temperature range of−40 to+50℃.This work builds on prior research on extended avalanche destruction in steel gas conduits and crack propagation prevention techniques.Theanalysis was conducted using a dynamic finite-element approach with the ANSYS-19.2/ExplicitDynamics software.Simulations of unprotected conduits revealed that increasing gas-dynamic pressure can convert a partial-depth crack into a through-crack,extending longitudinally to approximately seven times its initial length.Notably,at T=+50℃,the developed crack length was 1.2%longer than that at T=−40℃,highlighting the temperature sensitivity of crack progression.The modeling results indicate that crack propagation can be effectively controlled using a circular composite overlay with a thickness between 37.5%and 50%of the crack depth and a length approximately five times that of the initial crack,centered symmetrically over the crack.In addition,preliminary stress analysis indicated that limiting the overlay-induced pressure to 5%of the operational pressure effectively arrested crack growth without generating significant stress concentrations near the overlay boundaries,thereby preventing conduit integrity.
基金support of Russian Science Foundation (Project No.23-17-00148)as a part of R&D project (State registry No.121062200075-4).
文摘The article focuses on a theoretical and experimental framework for the quantification of interaction between nonlinear geomechnical and physicochemical processes in high-stress coal-bearing rock mass during mining under high seismic risk due to large-scale blasting and earthquakes,as well as because of structural and temperature effects.The tests were aimed to examine and study comprehensively the piston mechanism of gas exchange and mass transfer processes,revealed recently at the Institute of Mining,SB RAS,as well as to explain the fact that the earthquake-induced low-velocity(quasi-meter range)pendulum waves(velocity to 1 m/s and frequency of 0.5–5 Hz)could stimulate an increase in the gas content in coal mines.In order to perform laboratory investigation at the Institute of Mining SB RAS,special-purpose stand for analyzing gas exchange and mass transfer processes in coal-bearing geomaterials under various thermodynamic conditions(P,V,T)and gas composition was constructed in cooperation with the Institute of Semiconductors Physics SB RAS.Matching of air flow rate with compression pressures allowed to obtain relations showing that air flow rate increases at the uncertain time interval under the increasing of the compression pressure.The same measurements was carried out with another gases such as Hydrogen H_(2),Helium He,methane CH_(4),carbon dioxide CO_(2) and carbon oxide CO.The laboratory tests aimed to detailed investigation of the previously revealed“piston mechanism”of gas exchange and mass transfer processes in the coal specimens and their quantitative description in terms of theory of the pendulum waves were carried in the first time.Consequently,there are some arguments for the testing of the opportunity of quantitative description of the“piston mechanism”related to gas exchange and mass transfer processes in the scale of coal mines.It is relevant when pendulum waves induced by powerful earthquakes and technical blasting reaches the mine.