期刊文献+
共找到9,460篇文章
< 1 2 250 >
每页显示 20 50 100
Process intensification in gas/liquid/solid reaction in trickle bed reactors: A review 被引量:1
1
作者 Jing Tan Ya-Ni Ji +1 位作者 Wen-Sheng Deng Yue-Feng Su 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1203-1218,共16页
As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their fl... As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry. 展开更多
关键词 Trickle bed reactor Process intensification gas/liquid/solid catalytic reaction Petroleum industry
原文传递
Directional solidification casting technology of heavy-duty gas turbine blade with liquid metal cooling(LMC) process 被引量:5
2
作者 Xiao-fu Liu Yan-chun Lou +5 位作者 Bo Yu Gui-qiao Su Chang-chun Li Xin-li Guo Biao Li Guo-yan Shui 《China Foundry》 SCIE 2019年第1期23-30,共8页
In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of h... In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate. 展开更多
关键词 liquid METAL COOLING (LMC) HEAVY-DUTY gas turbine large-size blade directional solidIFICATION microstructure
在线阅读 下载PDF
Understanding fundamentals of electrochemical reactions with tender X-rays:A new lab-based operando X-ray photoelectron spectroscopy method for probing liquid/solid and gas/solid interfaces across a variety of electrochemical systems 被引量:1
3
作者 Chiyan Liu Qiao Dong +5 位作者 Yong Han Yijing Zang Hui Zhang Xiaoming Xie Yi Yu Zhi Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2858-2870,共13页
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol... Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions. 展开更多
关键词 Tender X-rays Ambient pressure X-ray photoelectron spectroscopy ELECTROCATALYSIS liquid/solid interface gas/solid interface
在线阅读 下载PDF
An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF 被引量:4
4
作者 Jun Cai Qiao Dong +7 位作者 Yong Han Bao-Hua Mao Hui Zhang Patrik G.Karlsson John ?hlund Ren-Zhong Tai Yi Yu Zhi Liu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第5期103-112,共10页
In the past few decades, various surface analysis techniques find wide applications in studies of interfacial phenomena ranging from fundamental surface science,catalysis, environmental science and energy materials.Wi... In the past few decades, various surface analysis techniques find wide applications in studies of interfacial phenomena ranging from fundamental surface science,catalysis, environmental science and energy materials.With the help of bright synchrotron sources, many of these techniques have been further advanced into novel in-situ/operando tools at synchrotron user facilities, providing molecular level understanding of chemical/electrochemical processes in-situ at gas–solid and liquid–solid interfaces.Designing a proper endstation for a dedicated beamline is one of the challenges in utilizing these techniques efficiently for a variety of user's requests. Many factors,including pressure differential, geometry and energy of the photon source, sample and analyzer, need to be optimized for the system of interest. In this paper, we discuss the design and performance of a new endstation at beamline02 B at the Shanghai Synchrotron Radiation Facility for ambient pressure X-ray photoelectron spectroscopy studies.This system, equipped with the newly developed hightransmission HiPP-3 analyzer, is demonstrated to be capable of efficiently collecting photoelectrons up to 1500 eV from ultrahigh vacuum to ambient pressure of 20 mbar.The spectromicroscopy mode of HiPP-3 analyzer also enables detection of photoelectron spatial distribution with resolution of 2.8 ± 0.3 lm in one dimension. In addition,the designing strategies of systems that allow investigations in phenomena at gas–solid interface and liquid–solid interface will be highlighted through our discussion. 展开更多
关键词 AMBIENT pressure XPS SYNCHROTRON liquid- solid interface SPECTROMICROSCOPY
在线阅读 下载PDF
Adsorption-modulated dynamical stability of nanobubbles at the solid–liquid interface
5
作者 Guiyuan Huang Lili Lan +2 位作者 Binghai Wen Li Yang Yong Yang 《Chinese Physics B》 2025年第6期401-408,共8页
We study the effects of gas adsorption on the dynamics and stability of nanobubbles at the solid–liquid interface. The phase diagram and dynamic evolution of surface nanobubbles were analyzed under varying equilibriu... We study the effects of gas adsorption on the dynamics and stability of nanobubbles at the solid–liquid interface. The phase diagram and dynamic evolution of surface nanobubbles were analyzed under varying equilibrium adsorption constant.Four distinct dynamic behaviors appear in the phase diagram: shrinking to dissolution, expanding to bursting, shrinking to stability, and expanding to stability. Special boundary states are identified in phase diagram, where the continuous growth of nanobubbles can take place even under very weak gas–surface interaction or with very small initial bubble size. Surface adsorption plays a critical role in the stability, lifetime, radius, and contact angle of nanobubbles, thereby demonstrating that pinning is not a prerequisite for stabilization. Furthermore, stable equilibrium nanobubbles exhibit a characteristic range of footprint radius, a limited height, and a small contact angle, consistent with experimental observations. 展开更多
关键词 NANOBUBBLES solidliquid interface phase diagram gas adsorption
原文传递
Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model 被引量:15
6
作者 Dong-mei Sun Xiao-min Li +1 位作者 Ping Feng Yong-ge Zang 《Water Science and Engineering》 EI CAS CSCD 2016年第3期183-194,共12页
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos... Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress. 展开更多
关键词 COUPLED liquid-gas-solid three-phase model Pore-air pressure UNSATURATED soil slope stability Rainfall INFILTRATION
在线阅读 下载PDF
Shape formation of closed-cell aluminum foam in solid–liquid–gas coexisting state
7
作者 Zhi-yong Liu Ying Cheng +3 位作者 Yan-xiang Li Xu Zhou Xiang Chen Ning-zhen Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第8期974-980,共7页
The mold pressing process was applied to investigate the formability of closed-cell aluminum foam in solid–liquid–gas coexisting state.Results show that the shape formation of closed-cell aluminum foam in the solid... The mold pressing process was applied to investigate the formability of closed-cell aluminum foam in solid–liquid–gas coexisting state.Results show that the shape formation of closed-cell aluminum foam in the solid–liquid–gas coexisting state was realized through cell wall deformation and cell movement caused by primary α-Al grains that slid,rotated,deformed,and ripened within cell walls.During formation,characteristic parameters of closed-cell aluminum foam were almost unchanged.Under proper forming conditions,shaped products of closed-cell aluminum foam could be fabricated through mold pressing. 展开更多
关键词 CLOSED-CELL aluminum foam SHAPE FORMING microstructure solidliquidgas coexisting state
在线阅读 下载PDF
Investigation on propagation mechanism of leakage acoustic waves in horizontal liquid pipelines containing gas bubbles
8
作者 Cui-Wei Liu Lin-Jing Yue +2 位作者 Yuan Xue Shu-Fang Zhu Yu-Xing Li 《Petroleum Science》 2025年第4期1757-1770,共14页
Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism ... Sound speed is essential for leakage detection in liquid pipelines when using acoustic methods,which can be significantly influenced by gas bubbles generated from leakage.The propagation characteristics and mechanism of acoustic waves in horizontal liquid pipelines containing gas bubbles are studied in detail in the present paper.The effect of sound wave frequency,bubble size and bubble distribution pattern on sound speed is studied through numerical simulations.The results show that the acoustic wave generated by leakage of liquid pipelines containing gas bubbles is a multi-frequency signal,and the energy of the signal is mainly concentrated within 200 Hz.In the low-frequency range,the propagation of sound waves has almost no dispersion in bubbly liquid.Sound speed at a certain void fraction is not constant,which is related to the bubble size and distribution pattern.The bubble size affects the gasliquid heat transfer equilibrium,during which sound speed is affected.For this reason,a thermodynamic correction factor is proposed,which enables the accuracy of the sound speed calculation to reach98.2%.What's more,sound speed increases non-linearly with the reduction of the bubble distribution space in the pipeline axial direction.This paper establishes a theoretical calculation model of sound speed based on the bubble distribution pattern in the pipeline axial direction,which is in good agreement with the numerical calculation results.The results of this paper provide the basis for applying acoustic leak detection technology in liquid pipelines containing gas bubbles. 展开更多
关键词 liquid pipelines gas bubbles Sound speed Leak detection Computational fluid dynamics
原文传递
Polymerized-ionic-liquid-based solid polymer electrolyte for ultra-stable lithium metal batteries enabled by structural design of monomer and crosslinked 3D network
9
作者 Lingwang Liu Jiangyan Xue +14 位作者 Yiwen Gao Shiqi Zhang Haiyang Zhang Keyang Peng Xin Zhang Suwan Lu Shixiao Weng Haifeng Tu Yang Liu Zhicheng Wang Fengrui Zhang Daosong Fu Jingjing Xu Qun Luo Xiaodong Wu 《Materials Reports(Energy)》 2025年第1期61-69,共9页
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ... Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability. 展开更多
关键词 Polymerized ionic liquid solid polymer electrolyte Structural design Crosslinked 3D network Lithium metal battery
在线阅读 下载PDF
Seismic response mitigation of offshore jacket platforms using a novel bidirectional tuned liquid column gas damper
10
作者 Mohamadhosein Mohasel Mohammad Reza Chenaghlou Ahmad Reza Mostafa Gharabaghi 《Theoretical & Applied Mechanics Letters》 2025年第5期508-521,共14页
This study investigates the seismic response mitigation of an offshore jacket platform via a novel damping system,the bidirectional tuned liquid column gas damper(BTLCGD).To efficiently model the complex platform stru... This study investigates the seismic response mitigation of an offshore jacket platform via a novel damping system,the bidirectional tuned liquid column gas damper(BTLCGD).To efficiently model the complex platform structure,an equivalent single degree of freedom approach was employed.Since the mass contribution of the first mode of the platform is more than 90%,this simplification significantly reduces the computational burden while maintaining accuracy.Therefore,this structure was modeled and analyzed on a scale of 1 to 36 using the Froudian law.To address the limitations of conventional tuned liquid column gas dampers(TLCGDs),which are susceptible to the directionality of seismic excitations,BTLCGD was proposed.This innovative damper is designed to operate effectively in two orthogonal directions,thereby improving seismic performance.Through numerical simulations,the performance of both TLCGD and BTLCGD was evaluated under seismic loading.The results demonstrated that BTLCGD significantly outperforms TLCGD in terms of reducing structural responses,particularly in the direction where TLCGD is ineffective.Furthermore,BTLCGD offers advantages in terms of installation and space requirements.The results of this research offer valuable perspectives into the design and implementation of effective damping systems for offshore structures,contributing to enhanced structural integrity and safety. 展开更多
关键词 Offshore jacket platform Structural control Bidirectional tuned liquid column gas damper Response time history
在线阅读 下载PDF
Reaction kinetics of CO_(2)capture into AMP/PZ/DME solid-liquid biphasic solvent
11
作者 Xiaoyun Chen Guohua Jing +1 位作者 Bihong Lv Zuoming Zhou 《Journal of Environmental Sciences》 2025年第4期622-631,共10页
The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol(AMP)/piperazine(PZ)/dipropylene glycol dimethyl ether(DME)features a high CO_(2)absorption loading,favorable phase separation behavior and h... The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol(AMP)/piperazine(PZ)/dipropylene glycol dimethyl ether(DME)features a high CO_(2)absorption loading,favorable phase separation behavior and high regeneration efficiency.Different with the liquid-liquid phase change solvent,the reaction kinetics of CO_(2)capture into solid-liquid biphasic solvent was rarely studied.In the present work,the reaction kinetics of CO_(2)absorption into AMP/PZ/DME solid-liquid biphasic solvent was investigated into the double stirred kettle reactor.The absorption reaction followed a pseudo-first-order kinetic model according to the zwitterion mechanism.The overall reaction rate constant(kov)and the enhancement factor(E)of CO_(2)absorption both increased with increasing temperature.The total mass transfer resistance of the absorbent decreased with increasing temperature and increased with increasing absorption loading,so the higher reaction temperature was conducive to the absorption,and the liquid phase mass transfer resistance was the main factor affecting the absorption rate. 展开更多
关键词 CO^(2)capture solidliquid phase−change Reaction kinetics Heat duty
原文传递
CFD-PBE simulation of gas-phase hydrodynamics in a gas-liquid-solid combined loop reactor 被引量:2
12
作者 Qi Nana Zhang Kai +2 位作者 Xu Gang Yang Yongping Zhang Hu 《Petroleum Science》 SCIE CAS CSCD 2013年第2期251-261,共11页
The computational fluid dynamics (CFD)-population balance equations (PBE) coupled model is employed to investigate the hydrodynamics in a gas-slurry internal loop reactor with external slurry circulation. The pred... The computational fluid dynamics (CFD)-population balance equations (PBE) coupled model is employed to investigate the hydrodynamics in a gas-slurry internal loop reactor with external slurry circulation. The predicted radial profiles of local gas holdup and bubble diameter are in good agreement with the corresponding experimental data. The spatio-temporal velocity profile of the gas phase reveals that the upward movement of gas is slowed down and the residence time of gas is prolonged by the downward momentum of the slurry, introduction of the external slurry can greatly improve the uniformity of gas holdup distribution in the reactor, especially in the downcomer-tube action region. Moreover, the interaction between the downward slurry and upward gas can lead to small bubble size and high interfacial area as well as good mass and heat transfer. The above results suggest the function of external slurry circulation for the internal loop reactor and would be helpful for optimizing the design and scale up of reactors. 展开更多
关键词 CFD-PBE simulation external slurry circulation gas-liquid-solid hydrodynamics population balance model
原文传递
CFD-DEM approaches for simulating dense gas±solid reacting flows:Progress and perspectives
13
作者 Gang WANG Wenqiang GUO Yanguang YANG 《Chinese Journal of Aeronautics》 2025年第9期1-2,共2页
1.Introduction Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)is a powerful tool for simulating dense gas-solid reacting flows,which is essential in combustion,metallurgy,and waste management.Traditional... 1.Introduction Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)is a powerful tool for simulating dense gas-solid reacting flows,which is essential in combustion,metallurgy,and waste management.Traditional methods face challenges in CFD-DEM modeling of dense gas-solid flows due to multi-scale characteristics,limiting resolution and creating simulation bottlenecks.By integrating fluid dynamics and particle behavior,it optimizes industrial processes.This review highlights advancements,applications,and challenges,emphasizing its role in sustainable engineering. 展开更多
关键词 integrating fluid dynamics particle behaviorit dense gas solid flows COMBUSTION simulation bottlenecksby computational fluid dynamics discrete element method waste managementtraditional METALLURGY
原文传递
Flux vector splitting solutions for coupling hydraulic transient of gas-liquid-solid three-phase flow in pipelines 被引量:3
14
作者 陈明 焦光伟 +1 位作者 邓松圣 王建华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期811-822,共12页
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in... The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability. 展开更多
关键词 gas-liquid-solid three-phase flow fluid-structure interaction hydraulic transient flux vector splitting second-order precision
在线阅读 下载PDF
A Scalar Acoustic Equation for Gases, Liquids, and Solids, Including Viscoelastic Media
15
作者 Eugen Mamontov Viktor Berbyuk 《Journal of Applied Mathematics and Physics》 2014年第10期960-970,共11页
The work deals with a mathematical model for real-time acoustic monitoring of material parameters of media in multi-state viscoelastic engineering systems continuously operating in irregular external environments (e.g... The work deals with a mathematical model for real-time acoustic monitoring of material parameters of media in multi-state viscoelastic engineering systems continuously operating in irregular external environments (e.g., wind turbines in cold climate areas, aircrafts, etc.). This monitoring is a high-reliability time-critical task. The work consistently derives a scalar wave PDE of the Stokes type for the non-equilibrium part (NEP) of the average normal stress in a medium. The explicit expression for the NEP of the corresponding pressure and the solution-adequateness condition are also obtained. The derived Stokes-type wave equation includes the stress relaxation time and is applicable to gases, liquids, and solids. 展开更多
关键词 ACOUSTIC Monitoring gas liquid or solid ACOUSTIC EQUATION Visoelastic Media STRESS Relaxation Time Average Normal STRESS the Stokes-Type Wave EQUATION
在线阅读 下载PDF
Thermochemical Heat Storage Performance in the Gas/Liquid-Solid Reactions of SrCl2 with NH3
16
作者 Kazuki Kuwata Soichirou Masuda +2 位作者 Noriyuki Kobayashi Takuya Fuse Toru Okamura 《Natural Resources》 2016年第11期655-665,共11页
Thermochemical heat storage is a promising technology for improving energy efficiency through the utilization of low-grade waste heat. The formation of a SrCl<sub>2</sub> ammine complex was selected as the... Thermochemical heat storage is a promising technology for improving energy efficiency through the utilization of low-grade waste heat. The formation of a SrCl<sub>2</sub> ammine complex was selected as the reaction system for the purpose of this study. Discharge characteristics were evaluated in a packed bed reactor for both the gas-solid reaction and the liquid-solid reaction. The average power of the gas-solid reaction was influenced by the pressure of the supplied ammonia gas, with greater powers being recorded at higher ammonia pressure. For the liquid-solid reaction, the obtained average power was comparable to that obtained for the gas-solid reaction at 0.2 MPa. Moreover, the lower heat transfer resistance in the reactor was observed, which was likely caused by the presence of liquid ammonia in the system. Finally, the short-term durability of the liquid-solid reaction system was demonstrated over 10 stable charge/discharge cycles. 展开更多
关键词 Thermochemical Heat Storage SrCl2 Ammine Complex Formation gas/liquid-solid Reaction
在线阅读 下载PDF
Criterion of gas and solid dual-phase flow atomization crash in molten metal 被引量:1
17
作者 陈刚 杨现 +1 位作者 苏斌 涂川俊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期208-216,共9页
A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepa... A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepared by common gas atomization and dual-phase flow atomization under similar conditions were compared. The experimental results show that the dual-phase flow-atomized powders have average particle sizes that are one-half that of the common gas-atomized particles;additionally, they possess a finer microstructure and higher cooling rate under the same atomization gas pressure and the same gas flow. The Weber number in the crash criteria of liquid atomization is adopted to measure the crash ability of the atomization media. The Weber number of the dual-phase flow atomization medium is the sum of that of the gas and the solid particles. Furthermore, the critical equation of the crash model in dual-phase flow atomization is established, and the main regularities associated with this process were analyzed. 展开更多
关键词 ATOMIZATION metal powder gas and solid dual-phase flow Weber number
在线阅读 下载PDF
In-situ study on hydrogen bubble evolution in the liquid Al/solid Ni interconnection by synchrotron radiation X-ray radiography 被引量:5
18
作者 Zongye Ding Qiaodan Hu +6 位作者 Wenquan Lu Xuan Ge Sheng Cao Siyu Sun Tianxing Yang Mingxu Xia Jianguo Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1388-1392,共5页
Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heat... Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heating. The size distribution for groups of bubbles follows a Gaussian distribution in the early stage and Lifshitz-Slyozov-Wagner(LSW) diffusion controlled distribution in the final stage. The intermetallic compounds(IMCs) first form during solidification, following by the hydrogen bubbles. The bubbles between two adjacent Al3Ni grains grow unidirectionally along the liquid channel, with the bottom being impeded by the Al3Ni phase and the radius of the growth front being smaller. For the bubbles at triple junctions, they grow along the liquid channel and the crack with morphology transition. 展开更多
关键词 Synchrotron radiation liquid Al/solid NI INTERCONNECTION HYDROGEN BUBBLE Intermetallic compounds Growth behavior
原文传递
Superwide-angle acoustic propagations above the critical angles of the Snell law in liquid solid superlattice 被引量:5
19
作者 张赛 张宇 高晓薇 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期263-269,共7页
In this paper, superwide-angle acoustic propagations above the critical angles of the Snell law in liquid–solid superlattice are investigated. Incident waves above the critical angles of the Snell law usually inevita... In this paper, superwide-angle acoustic propagations above the critical angles of the Snell law in liquid–solid superlattice are investigated. Incident waves above the critical angles of the Snell law usually inevitably induce total reflection.However, incident waves with big oblique angles through the liquid–solid superlattice will produce a superwide angle transmission in a certain frequency range so that total reflection does not occur. Together with the simulation by finite element analysis, theoretical analysis by using transfer matrix method suggests the Bragg scattering of the Lamb waves as the physical mechanism of acoustic wave super-propagation far beyond the critical angle. Incident angle, filling fraction,and material thickness have significant influences on propagation. Superwide-angle propagation phenomenon may have potential applications in nondestructive evaluation of layered structures and controlling of energy flux. 展开更多
关键词 superwide-angle liquidsolid Bragg scattering Lamb wave SUPERLATTICE
原文传递
Investigation of erosion behavior of 304 stainless steel under solid–liquid jet flow impinging at 30° 被引量:14
20
作者 Yan-Lin Zhao Chun-Yan Tang +2 位作者 Jun Yao Zi-Hua Zeng Shi-Gang Dong 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1135-1150,共16页
This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid b... This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate. 展开更多
关键词 solidliquid flow Impinging jet EROSION EXPERIMENT Numerical simulation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部