期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
OptimumMachine Learning on Gas Extraction and Production for Adaptive Negative Control
1
作者 Cheng Cheng Xuan-Ping Gong +2 位作者 Xiao-Yu Cheng Lu Xiao Xing-Ying Ma 《Frontiers in Heat and Mass Transfer》 2025年第3期1037-1051,共15页
To overcome the challenges associated with predicting gas extraction performance and mitigating the gradual decline in extraction volume,which adversely impacts gas utilization efficiency in mines,a gas extraction pur... To overcome the challenges associated with predicting gas extraction performance and mitigating the gradual decline in extraction volume,which adversely impacts gas utilization efficiency in mines,a gas extraction pure volume prediction model was developed using Support Vector Regression(SVR)and Random Forest(RF),with hyperparameters fine-tuned via the Genetic Algorithm(GA).Building upon this,an adaptive control model for gas extraction negative pressure was formulated to maximize the extracted gas volume within the pipeline network,followed by field validation experiments.Experimental results indicate that the GA-SVR model surpasses comparable models in terms of mean absolute error,root mean square error,and mean absolute percentage error.In the extraction process of bedding boreholes,the influence of negative pressure on gas extraction concentration diminishes over time,yet it remains a critical factor in determining the extracted pure volume.In contrast,throughout the entire extraction period of cross-layer boreholes,both extracted pure volume and concentration exhibit pronounced sensitivity to fluctuations in extraction negative pressure.Field experiments demonstrated that the adaptive controlmodel enhanced the average extracted gas volume by 5.08% in the experimental borehole group compared to the control group during the later extraction stage,with a more pronounced increase of 7.15% in the first 15 days.The research findings offer essential technical support for the efficient utilization and long-term sustainable development of mine gas resources.The research findings offer essential technical support for gas disaster mitigation and the sustained,efficient utilization of mine gas. 展开更多
关键词 gas extraction support vector regression(SVR) genetic algorithm hyperparameters fine-tuned negative pressure adaptive control
在线阅读 下载PDF
Design of a high-performance pressure-preserving controller for in situ pressure-preserving coring in deep oil and gas extraction
2
作者 Xiaojun Shi Heping Xie +2 位作者 Cong Li Guikang Liu Mingzhong Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5038-5052,共15页
Pressure-preserving controllers(PPCs)are crucial components of in situ pressure-preserving coring(IPP-Coring)devices for deep oil and gas extraction,and their ultimate pressure-bearing(UPB)capability determines the up... Pressure-preserving controllers(PPCs)are crucial components of in situ pressure-preserving coring(IPP-Coring)devices for deep oil and gas extraction,and their ultimate pressure-bearing(UPB)capability determines the upper limit of their ability to acquire oil and gas reserves.However,due to the UPB-capability and sealing challenges,the working pressure typically does not exceed 70 MPa.In this study,the optimal design of a PPC using a self-developed IPP-Coring test platform is presented,and its seal failure mechanism is revealed.Experimental results demonstrate that the designed saddle-shaped PPC achieves a minimal UPB-capability of 140 MPa,which is twice the highest value reported in literature.A numerical simulation method was developed to predict the UPB-capability of the PPC,and its reliability was validated in comparison with experimental results.The simulation results indicate that the sealing failure of the PPC is attributed to a progressive escalation in seal clearance between valve cover and seat,which causes an O-ring extrusion.Under ambient temperature and ultrahigh pressure,the critical threshold for seal clearance in PPC seal failure is approximately 0.2 mm.These results provide significant insights into enhancing deep resource acquisition capabilities. 展开更多
关键词 Deep mining Pressure-preserving coring Oil and gas extraction Pressure-preserving controller
在线阅读 下载PDF
Experimental investigation on coal pore-fracture variation and fractal characteristics synergistically affected by solvents for improving clean gas extraction 被引量:1
3
作者 Feilin Han Sheng Xue +3 位作者 Chunshan Zheng Zhongwei Chen Guofu Li Bingyou Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期413-425,共13页
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal... Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology. 展开更多
关键词 Clean gas extraction Chemical solvent Experimental investigation Fractal characteristics Pore fracture
在线阅读 下载PDF
Research advances in enhanced coal seam gas extraction by controllable shock wave fracturing
4
作者 Chaojun Fan Hao Sun +6 位作者 Sheng Li Lei Yang Bin Xiao Zhenhua Yang Mingkun Luo Xiaofeng Jiang Lijun Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期1-31,共31页
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ... With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated. 展开更多
关键词 Controllable shock wave Permeability enhancement gas extraction Basic principle Experimental test Mathematical models On-site test
在线阅读 下载PDF
Theory and practice of integrated coal production and gas extraction 被引量:71
5
作者 Liang Yuan 《International Journal of Coal Science & Technology》 EI 2015年第1期3-11,共9页
The integrated extraction of coal and gas combines coal mining with gas capture. Taking into account the gas deposition and flow conditions in the Chinese coal basins, this paper describes the status of the theory and... The integrated extraction of coal and gas combines coal mining with gas capture. Taking into account the gas deposition and flow conditions in the Chinese coal basins, this paper describes the status of the theory and key technologies of this integrated extraction system, and presents its application and practice in the Shaqu, Zhongxing, Fenghuangshan and Pingmei mines. Areas for further improvements in future studies are discussed, focusing in particular on the fundamentals of the extraction system to make it greener, more scientific, and more advanced in both the exploitation and utilization of coal and the gas in coal. 展开更多
关键词 Integrated coal production gas extraction De-stress mining Pillarless mining Circular overlying zone
在线阅读 下载PDF
Development and application of an efficient gas extraction model for low-rank high-gas coal beds 被引量:28
6
作者 Baiquan Lin 《International Journal of Coal Science & Technology》 EI 2015年第1期76-83,共8页
To promote gas extraction in low-rank high-gas coal beds, the pore structure characteristics of the coal and their effect on gas desorption were studied. The results show that micropores are relatively rare in low-ran... To promote gas extraction in low-rank high-gas coal beds, the pore structure characteristics of the coal and their effect on gas desorption were studied. The results show that micropores are relatively rare in low-rank coal; mesopores are usually semi-open and inkpot-shaped whereas macropores are usually slit-shaped. Gas desorption is relatively easy at high- pressure stages, whereas it is difficult at low-pressure stages because of the 'bottleneck effect' of the semi-open inkpot-shaped mesopores. A 'two-three-two' gas extraction model was established following experimental analysis and engineering practice applied in the Binchang mining area. In this model, gas extraction is divided into three periods: a planning period, a transitional period and a production period. In each period, surface extraction and underground extraction are performed simultaneously, and pressure-relief extraction and conventional extraction are coupled to each other. After applying this model, the gas extraction rate rose to 78.8 %. 展开更多
关键词 Low-rank coal Pore structure gas extraction Inkpot-shaped pore
在线阅读 下载PDF
Application of deep borehole blasting on fully mechanized hard top-coal pre-splitting and gas extraction in the special thick seam 被引量:4
7
作者 Liu Jian Liu Zegong +2 位作者 Xue Junhua Gao Kui Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期755-760,共6页
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas... In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable. 展开更多
关键词 Deep borehole blasting Fully mechanized mining Hard thick coal seam Top-coal pre-splitting gas extraction
在线阅读 下载PDF
Technique of coal mining and gas extraction without coal pillar in multi-seam with low permeability 被引量:5
8
作者 YUAN Liang 《Journal of Coal Science & Engineering(China)》 2009年第2期120-128,共9页
Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep le... Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability. 展开更多
关键词 coal seam with low permeability without coal-pillar gob-side roadway retaining roadway retaining and borehole drilling coal mining and gas extraction
在线阅读 下载PDF
Theory of gas extraction from coal seams and its use 被引量:5
9
作者 FAN Xi-sheng 《Journal of Coal Science & Engineering(China)》 2012年第3期276-279,共4页
Gas extraction is one of the main measures of control and use of gas of coal mines. At present, the design method is under the experimental period and do not satisfy the need of practice. In this paper, the theory of ... Gas extraction is one of the main measures of control and use of gas of coal mines. At present, the design method is under the experimental period and do not satisfy the need of practice. In this paper, the theory of gas extraction of coal seams based upon Darcy law was studied. Mathematical model of gas extraction of coal seams was established and two kinds of solv- ing approaches based on computer software and linear approximation were given. The rightness and the validities of the model were examined with a practical example. Results obtained can be used to determine and optimize the parameters related etc. 展开更多
关键词 coal seam gas gas extraction linear approximation
在线阅读 下载PDF
Characteristics of fracture development and gas extraction of a lower protected seam
10
作者 王海锋 《Journal of Chongqing University》 CAS 2009年第4期239-244,共6页
To ensure the mining safety of working face in the protective seam and meanwhile extract pressure-relief gas of the lower protected seam and eliminate its outburst risk,the present study researched into fracture devel... To ensure the mining safety of working face in the protective seam and meanwhile extract pressure-relief gas of the lower protected seam and eliminate its outburst risk,the present study researched into fracture development of floor coal-rock mass of the protective seam and migration rule of pressure-relief gas from a protected seam so as to obtain an effective pressure- relief gas extraction method.The results show that after the upper protective seam was mined,mining-induced fracturing floor coal-rock mas... 展开更多
关键词 short distance protective seam gas emission penetration borehole gas extraction
在线阅读 下载PDF
Research on the Synergistic Application of Secure Isolation Gateways and Zero Trust Architecture in the Oil and Gas IoT
11
作者 Wang Bo Wang Wei +1 位作者 Zhang Fan Li Zhaoyun 《China Oil & Gas》 2025年第3期61-66,共6页
As industrialization and informatization in China deeply integrate and the Internet of Things rapidly develops,industrial control systems are facing increasingly severe information security challenges.The industrial c... As industrialization and informatization in China deeply integrate and the Internet of Things rapidly develops,industrial control systems are facing increasingly severe information security challenges.The industrial control system of the gas extraction plant is characterized by numerous points and centralized operations,with a strong reliance on the system and stringent real-time requirements. 展开更多
关键词 industrial control system internet things oil gas IoT control systems secure isolation gateways zero trust architecture information security challengesthe gas extraction plant
在线阅读 下载PDF
Effect of damage zone around borehole on carbon dioxide injection promoted gas extraction in soft and low-permeability coal seam
12
作者 Lijun ZHOU Xihua ZHOU +2 位作者 Gang BAI Xianlin LI Mingkun LUO 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期776-787,共12页
Injecting external CO_(2) into soft and low-permeability coal seams can improve CH4 extacctinn efficiency, and also benefit in CO_(2) sequestration. However, the distribution law of damage zone around borehole in soft... Injecting external CO_(2) into soft and low-permeability coal seams can improve CH4 extacctinn efficiency, and also benefit in CO_(2) sequestration. However, the distribution law of damage zone around borehole in soft coal seam and its effect on the efficiency of CO_(2) injection promoted CH4 extraction are not clear. In this paper, a multi-physics coupling mathematical model considering damage effect is established for simulating the process of CO_(2) injection promoted CH4 extraction in soft and low-permeability coal seam. The distribution of damage zone and permeability around boreholes under different diameters and coal strengths are analyzed. The gas pressure and gas content in coal seam during CO_(2) injection promoted CH4 extraction when the model considered damage effect are compared with that of ignored. The results show that small borehole diameter corresponds to narrow damage zone around the borehole in coal seam. The damage zone expands with the increase of the borehole diameter. The damage zone increases exponentially with the borehole diameter, while decreases exponentially with the compressive strength of coal seam. The highest permeability in the damage zone has increased by nearly 300 times under the condition of simulated case. CH4 pressure around the extraction borehole reduces, and the reduction area expands with the increase of time. Compared with the result of considering the damage effect, the reduction area of ignoring it is smaller, and the reducing speed is slower. The integrated effect of CO_(2) injection and CH4 extraction leads to rapid decrease of CH4 content in coal seam near the boreholes. The CO_(2) pressure and content increase around the injection borehole, and the increasing area gradually extends to the whole coal seam. In soft coal seams, failure to consider the damage effect will underestimate the efficiency of CH4 extraction and CO_(2) sequestration, resulting conservative layout of boreholes. 展开更多
关键词 soft and low-permeability coal seam carbon dioxideinjection gas extraction damageeffect permeability evolution
原文传递
Definition, theory, methods, and applications of the safe and efficient simultaneous extraction of coal and gas 被引量:36
13
作者 Yuanping Cheng Liang Wang +3 位作者 Hongyong Liu Shengli Kong Jintuo Zhu Qingyi Tu 《International Journal of Coal Science & Technology》 EI 2015年第1期52-65,共14页
Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the... Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the main coal-producing countries around the world. However, the concrete definition of simultaneous extraction is vague and there is little accurate theoretical support for the simultaneous extraction of coal and gas, which makes it difficult to determine an efficient gas drainage method appropriate to the features of coal seams. Based on theoretical analysis, laboratory tests and field observations, a specific definition of simultaneous extraction of coal and gas is proposed after analyzing the characteristics of coal seam occurrences in China, and we developed the mechanism of mining-enhanced permeability and established the corresponding theoretical model. This comprises a process of fracture network formation, in which the original fractures are opened and new fractures are produced by unloading damage. According to the theoretical model, the engineering approaches and their quantitative parameters of 'unloading by borehole drilling' for single coal seams and 'unloading by protective seam mining' for groups of coal seams are proposed, and the construction principles for coal exploitation and gas-drainage systems for different conditions are given. These methods were applied successfully in the Tunlan Coal Mine in Shanxi Province and the Panyi Coal Mine in Anhui Province and could assure safe and efficient simultaneous extraction of coal and gas in these outburst coal mines. 展开更多
关键词 Coal seam gas Outburst coal seam Mining-enhanced permeability Simultaneous extraction of coal and gas
在线阅读 下载PDF
FSS-YOLO:The Lightweight Drill Pipe Detection Method Based on YOLOv8n-obb
14
作者 Mingyang Zhao Xiaojun Li +1 位作者 Miao Li Bangbang Mu 《Computers, Materials & Continua》 2025年第8期2827-2846,共20页
The control of gas extraction in coal mines relies on the effectiveness of gas extraction.The main method of gas extraction is to drive drill pipes into the coal seam through a drilling rig and use technologies such a... The control of gas extraction in coal mines relies on the effectiveness of gas extraction.The main method of gas extraction is to drive drill pipes into the coal seam through a drilling rig and use technologies such as hydraulic fracturing to pre-extract gas in the drill holes.Therefore,the real-time detection of the drill pipe status is closely related to the effectiveness of gas extraction.To achieve fast and accurate identification of drill pipes,we propose FSSYOLO,which is a lightweight drill pipe detection method based on YOLOv8n-obb.This method first introduces the FasterBlock module into the C2f module of YOLOv8n-obb to reduce the number of model parameters and decrease the computational cost of the model and redundant feature maps.Next,the SimAM attention mechanism is added to the backbone network to enhance the weight of important features in the feature map and improve the model’s feature extraction capability.In addition,using shared convolution to optimize the detection head,not only lightens the detection head but also enhances its ability to learn features of different scales,improving the model’s generalization ability.Finally,the FSS-YOLO algorithm is validated on the self-built dataset.The results show that compared with the original algorithm,FSS-YOLO achieves improvements of 5.1%in mAP50 and 11.5%in Recall,reduces the number of parameters by 45.8%,and achieves an inference speed of 27.8 ms/frame on Jetson Orin NX.Additionally,the visual detection results for different scenarios demonstrate that the improved YOLOv8n-obb algorithm has promising application prospects. 展开更多
关键词 gas extraction YOLOv8n-obb SimAM shared Conv coal mine intelligent coal mine
在线阅读 下载PDF
Study on "fracturing-sealing" integration technology based on high-energy gas fracturing in single seam with high gas and low air permeability 被引量:10
15
作者 Zhang Chao Lin Baiquan +2 位作者 Zhou Yan Zhai Cheng Zhu Chuanjie 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期841-846,共6页
To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305... To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305 Tunliu mine.In the experiment,coal seams can achieve the aim of antireflection effect through the following process:First,project main cracks with the high energy pulse jet.Second,break the coal body by delaying the propellant blasting.Next,destroy the dense structure of the hard coal body,and form loose slit rings around the holes.Finally,seal the boreholes with the"strong-weak-strong"pressurized sealing technology.The results are as follows:The average concentration of gas extraction increases from8.3%to 39.5%.The average discharge of gas extraction increases from 0.02 to 0.10 m^3/min.The tunneling speeds up from 49.5 to 130 m/month.And the permeability of coal seams improves nearly tenfold.Under the same conditions,the technology is much more efficient in depressurization and antireflection than common methods.In other words,it will provide a more effective way for the gas extraction of single seam with high gas and low air permeability. 展开更多
关键词 Coal gas High-energy gas fracturing "Fracturing-sealing" integration Pressure relief and permeability increase gas extraction
在线阅读 下载PDF
The potential of domestic production and imports of oil and gas in China:an energy return on investment perspective 被引量:4
16
作者 Zhao-Yang Kong Xiu-Cheng Dong +3 位作者 Qian Shao Xin Wan Da-Lin Tang Gui-Xian Liu 《Petroleum Science》 SCIE CAS CSCD 2016年第4期788-804,共17页
Concerns about China’s energy security have escalated because of the country’s high dependency on oil and gas imports, so it is necessary to calculate the availability of domestic oil and gas resources and China’s ... Concerns about China’s energy security have escalated because of the country’s high dependency on oil and gas imports, so it is necessary to calculate the availability of domestic oil and gas resources and China’s ability to obtain foreign energy through trade. In this work,the calculation was done by using the energy return on investment(EROI) method. The results showed that the EROIstnd(i.e., standard EROI) of China’s oil and gas extraction decreased from approximately 17.3:1 in 1986 to 8.4:1 in 2003, but it increased to 12.2:1 in 2013. From a company-level perspective, the EROIstnddiffered for different companies and was in the range of(8–12):1. The EROI2,d(EROI considering energy outputs after processed and direct energy inputs) for different companies was in the range of(3–7):1. The EROI of imported oil(EROIIO)declined from 14.8:1 in 1998 to approximately 4.8:1 in 2014, and the EROI of imported natural gas(EROIING)declined from 16.7:1 in 2009 to 8.6:1 in 2014. In 2015, the EROIIO and EROIING showed a slight increase due to decreasing import prices. In general, this paper suggests that from a net energy perspective, it has become more difficult for China to obtain oil and gas from both domestic production and imports. China is experiencing an EROI decline, which demonstrates the risk in the use of unsustainable fossil resources. 展开更多
关键词 EROI Oil and gas extraction Imported oil Imported natural gas China
原文传递
Elimination mechanism of coal and gas outburst based on geo‑dynamic system with stress–damage–seepage interactions 被引量:2
17
作者 Lingjin Xu Chaojun Fan +4 位作者 Mingkun Luo Sheng Li Jun Han Xiang Fu Bin Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期47-61,共15页
Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam... Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively. 展开更多
关键词 Coal and gas outburst Geo-dynamic system Stress–damage–seepage coupling Elimination mechanism Instability criterion gas extraction
在线阅读 下载PDF
Experimental study of water effects on gas desorption during highpressure water injection
18
作者 ZHANG Guo-hua LIU Xian-xin BI Ye-wu PU Wen-long 《Journal of Coal Science & Engineering(China)》 2011年第4期408-413,共6页
For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measu... For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion. The law of water effect on gas desorption was obtained after water invasion through experiment for the first time. The results show that water's later invasion not only can make the quantity of gas dcsorp- tion greatly reduced, but also can make gas desorption end early. Therefore, when evaluating the applications of high-pressure water injection to increase gas extraction efficiency, we should take water damaging effects on gas desorption into account. 展开更多
关键词 gas desorption gas extraction high pressure water injection later invasion
在线阅读 下载PDF
A Study on the Dynamic Adjustment of Pressure Relief Gas Drainage Drilling in Mined-Out Areas
19
作者 Bo Bi Jianbing Meng Bengliang Cheng 《World Journal of Engineering and Technology》 2021年第2期337-345,共9页
With the development of coal mine equipment mechanization, the wide application of </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">... With the development of coal mine equipment mechanization, the wide application of </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">hole instead of roadway</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;"> technology greatly reduces the cost of gas control engineering, but puts forward higher requirements for the effect of gas drainage. At present, the drainage effect of coal mine inspection boreholes is mainly evaluated by the drilling field, but the flow rate and gas concentration of each borehole in the drilling field are not the same, which causes the gas drainage effect not to be correctly mastered. In the present study, the pressure relief drilling in the goaf of the working face of a typical multi-coal seam group high gas outburst mining area was taken as the research object. Through the newly developed portable drilling inspection device, the pure amount of drilling drainage was investigated, and the drilling design was dynamically adjusted. The enhancement of the goaf pressure relief gas control effect ensures the gas safety of the mining face. At the same time, this improves the gas extraction rate and reduces the emission of greenhouse gases. If the data from the borehole investigation can be transmitted in real time and analyzed in big data, the optimal extraction negative pressure can be predicted through a regression algorithm. Under the control of the negative pressure of each borehole by the actuator, the extraction system can have the function of intelligent judgment. 展开更多
关键词 Pressure-Relief gas extraction Study on the extraction Effect Borehole Design Determination of Pore Parameters
在线阅读 下载PDF
Gas-Liquid Separation Processes for Mud Logging Systems
20
作者 Daniela Martins Marum Maria Dina Afonso Brian Bernardo Ochoa 《Journal of Geological Resource and Engineering》 2021年第2期29-37,共9页
The TRU-Vision system,developed by Baker Hughes,analyzes the gas extracted from drilling mud to estimate the hydrocarbons composition in drilled rock formations.Several separation processes had been surveyed in order ... The TRU-Vision system,developed by Baker Hughes,analyzes the gas extracted from drilling mud to estimate the hydrocarbons composition in drilled rock formations.Several separation processes had been surveyed in order to enhance the gas extraction at the gas trap,namely,mechanical stirring,vacuum,air sparging,membrane separation processes,ultrasounds,and cyclones.Mechanical stirring devices(one propeller,one flat-blade turbine,and two baffles sets),a vacuum generator,and an air bubble generator were designed and assembled to increase the efficiency and the response stability of TRU-Vision system. 展开更多
关键词 Air sparging gas extraction mechanical stirring mud logging VACUUM
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部