期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
Systematic modeling and methodological approaches for optimizing gas storage facility design with fluctuating hydraulic characteristics
1
作者 Shi-Tao Liu Cheng-Yu Li +5 位作者 Jun Zhou Zi-Chen Li Zhan-Peng Ye Jing-Hong Peng Yun-Xiang Zhao Guang-Chuan Liang 《Petroleum Science》 2025年第6期2546-2569,共24页
As the proportion of natural gas consumption in the energy market gradually increases,optimizing the design of gas storage surface system(GSSS)has become a current research focus.Existing studies on the two independen... As the proportion of natural gas consumption in the energy market gradually increases,optimizing the design of gas storage surface system(GSSS)has become a current research focus.Existing studies on the two independent injection pipeline network(InNET)and production pipeline network(ProNET)for underground natural gas storage(UNGS)are scarce,and no optimization methods have been proposed yet.Therefore,this paper focuses on the flow and pressure boundary characteristics of the GSSS.It constructs systematic models,including the injection multi-condition coupled model(INM model),production multi-condition coupled model(PRM model),injection single condition model(INS model)and production single condition model(PRS model)to optimize the design parameters.Additionally,this paper proposes a hybrid genetic algorithm based on generalized reduced gradient(HGA-GRG)for solving the models.The models and algorithm are applied to a case study with the objective of minimizing the cost of the pipeline network.For the GSSS,nine different condition scenarios are considered,and iterative process analysis and sensitivity analysis of these scenarios are conducted.Moreover,simulation scenarios are set up to verify the applicability of different scenarios to the boundaries.The research results show that the cost of the InNET considering the coupled pressure boundary is 64.4890×10^(4) CNY,and the cost of the ProNET considering coupled flow and pressure boundaries is 87.7655×10^(4) CNY,demonstrating greater applicability and economy than those considering only one or two types of conditions.The algorithms and models proposed in this paper provide an effective means for the design of parameters for GSSS. 展开更多
关键词 gas storage Pipeline diameter optimization Hybrid genetic algorithm based on generalized reduced gradient Multi-condition Hydraulic characteristics
原文传递
Semi-analytical assessment of dynamic sealing capacity of underground gas storage:A case of Songliao Basin,Northeastern China
2
作者 Caoxuan Wen Shanpo Jia +5 位作者 Xiaofei Fu Guojun Wu Bintao Wang Junchang Sun Haijun He Xiangjun Zeng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2904-2927,共24页
The cyclic injection and production of fluids into and from underground gas storage(UGS)may lead to caprock failure,such as capillary sealing failure,hydraulic fracturing,shear failure,and fault slipping or dilation.T... The cyclic injection and production of fluids into and from underground gas storage(UGS)may lead to caprock failure,such as capillary sealing failure,hydraulic fracturing,shear failure,and fault slipping or dilation.The dynamic sealing capacity of a caprock-fault system is a critical constraint for safe operation,and is a key factor in determining the maximum operating pressure(MOP).This study proposed an efficient semi-analytical method for calculating changes in the in situ stress within the caprock.Next,the parameters of dynamic pore pressure,in situ stresses,and deformations obtained from reservoir simulations and geomechanical modeling were used for inputs for the analytical solution.Based on the calculated results,an experimental scheme for the coupled cyclic stress-permeability testing of caprock was designed.The stability analysis indicated that the caprock was not prone to fatigue shear failure under the current injection and production strategy,supported by the experimental results.The experimental results further reveal that the sealing capacity of caprock plugs may remain stable.This phenomenon is attributed to cyclic stress causing pore connectivity and microcrack initiation in certain plugs,while leading to pore compaction in others.A comparison between the dynamic pore pressure and the minimum principal stress suggests that the risk of tensile failure is extremely low.Furthermore,although the faults remain stable under the current injection and production strategies,the continuous increase in injection pressure may lead to an increased tendency for fault slip and dilation,which can cause fault slip ultimately.The MOPs corresponding to each failure mode were calculated.The minimum value of approximately 36.5 MPa at capillary sealing failure indicated that the gas breakthrough in the caprock occurred earlier than rock failure.Therefore,this minimumvalue can be used as the MOP for the target UGS. 展开更多
关键词 Underground gas storage Maximum operating pressure Caprock-fault system In situ stress Mechanical integrity Dynamic sealing capacity
在线阅读 下载PDF
Optimization of Operating Parameters for Underground Gas Storage Based on Genetic Algorithm
3
作者 Yuming Luo Wei Zhang +7 位作者 Anqi Zhao Ling Gou Li Chen Yaling Yang Xiaoping Wang Shichang Liu Huiqing Qi Shilai Hu 《Energy Engineering》 2025年第8期3201-3221,共21页
This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Pr... This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Previous research primarily focused on integrating reservoir,wellbore,and surface facility constraints,often resulting in broad constraint ranges and slow model convergence.To solve this problem,the present study introduces additional constraints on maximum withdrawal rates by combining binomial deliverability equations with material balance equations for closed gas reservoirs,while considering extreme peak-shaving demands.This approach effectively narrows the constraint range.Subsequently,a collaborative optimization model with maximum gas production as the objective function is established,and the model employs a joint solution strategy combining genetic algorithms and numerical simulation techniques.Finally,this methodology was applied to optimize operational parameters for Gas Storage T.The results demonstrate:(1)The convergence of the model was achieved after 6 iterations,which significantly improved the convergence speed of the model;(2)The maximum working gas volume reached 11.605×10^(8) m^(3),which increased by 13.78%compared with the traditional optimization method;(3)This method greatly improves the operation safety and the ultimate peak load balancing capability.The research provides important technical support for the intelligent decision of injection and production parameters of gas storage and improving peak load balancing ability. 展开更多
关键词 Underground gas storage operational parameter optimization extreme peak-shaving constraints genetic algorithm MODEL
在线阅读 下载PDF
Damage evolution of surrounding sandstone rock under charging–discharging cyclic loading in the natural gas storage of abandoned mines based on the discrete element method
4
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Erwin Oh Jun Hu Ruichong Zhang 《Deep Underground Science and Engineering》 2025年第2期329-338,共10页
Gas storage in abandoned mines is one way to reuse waste space resources.The surrounding rock of gas storage reservoirs in underground roadways undergoes damage and deformation under the cyclic loading of gas charging... Gas storage in abandoned mines is one way to reuse waste space resources.The surrounding rock of gas storage reservoirs in underground roadways undergoes damage and deformation under the cyclic loading of gas charging and discharging,which can pose a risk to the safety of the reservoirs.This study establishes a true triaxial numerical model of rock mass with the discrete element method(DEM)and explores the crack evolution of surrounding rock of underground gas storage during cyclic loading and unloading.Also,a damage evolution model in numerical analysis considering residual deformation is developed to explain the experimental results.As was revealed,cyclic loading and unloading resulted in fatigue damage in the specimen and caused strength deterioration of the specimen.During the loading process,the uniformly distributed force chains of the rock mass redistributed,evolving gradually to mostly transverse force chains.This contributed to the appearance of blank areas in the force chains when through cracks appear.The ratio of tensile cracks to shear cracks gradually decreases and finally stabilizes at 7:1.The damage evolution model considering residual strain can be mutually verified with the numerical simulation results.Based on the DEM model,it was found that there was a certain threshold of confining pressure.When the confining pressure exceeded 30 MPa,the deformation to ductility of sandstone samples began to accelerate,with a greater residual strength.This study provides a theoretical basis for analyzing the long-term mechanical behavior of surrounding rock of gas storage in abandoned mines. 展开更多
关键词 damage evolution model of surrounding rock discrete element method force chains gas charging-discharging cycle gas storage in abandoned mines
原文传递
Simulation on H_(2)S Migration and Elutriation during Cyclic Operation of Underground Sour Gas Storage
5
作者 Siji Chen Gang Chen +6 位作者 Wei Wang Han Liu Mukun Ouyang Wanhong Zhang Lianghua Zhang Wei Tang Shilai Hu 《Energy Engineering》 2025年第7期2819-2843,共25页
The construction and operation of sulfur-containing gas storage are often more difficult than a non-sulfur storage facility due to the need to prevent environmental contamination from H_(2)S leaks,as well as the corro... The construction and operation of sulfur-containing gas storage are often more difficult than a non-sulfur storage facility due to the need to prevent environmental contamination from H_(2)S leaks,as well as the corrosive effects of H_(2)S on production facilities.Rapid elutriation of H_(2)S from the reservoir during the construction of the gas storage is an effective way to avoid these problems.However,the existing H_(2)S elutriation method has low efficiency and high economic cost,which limits the development of reconstructed gas storage of sulfur-containing gas reservoirs.To improve the efficiency of H_(2)S elutriation in sulfur-containing gas reservoirs and enhance the economic benefits,a numerical simulation model of multiphase flow components was established to study the migration law of H_(2)S in the multi-cycle operation of gas storage.Based on the H_(2)S migrate law,the displacement H_(2)S elutriation method was developed,and the elutriation mechanism and elutriation efficiency of the two methods were compared and analyzed.In addition,the main controlling factors affecting the H_(2)S elutriation efficiency were investigated,and the H_(2)S elutriation scheme of H gas storage was optimized.The results indicate that H_(2)S migrates between near-well and far-well regions under pressure differentials.The traditional H_(2)S elutriation method relies on concentration gradient diffusion,whereas the displacement elutriation approach leverages pressure differentials with higher H_(2)S elutriation efficiency.For the displacement elutriation method,higher reservoir permeability enhances the peak-shaving capacity of the gas storage but has a minor impact on H_(2)S elutriation when the formation permeability is between 30 and 100 mD.The elutriation efficiency is significantly higher when wells are drilled in the high structural parts of the reservoir compared to the low structural parts.Longer displacement elutriation time within a cycle improves H_(2)S elutriation efficiency but reduces the working gas volume of the storage.Therefore,the optimal displacement time for H gas storage is 60 days.An optimized H_(2)S elutriation scheme enabled the working gas to meet the national first-class natural gas standard within 10 cycles.This study elucidates H_(2)S migration patterns,H_(2)S elutriation mechanisms,and key influence factors on H_(2)S elutriation efficiency,offering valuable technical insights for sour gas storage operations. 展开更多
关键词 Underground sour gas storage H_(2)S migration H_(2)S elutriation numerical simulation elutriation efficiency
在线阅读 下载PDF
Hybrid genetic algorithm for parametric optimization of surface pipeline networks in underground natural gas storage harmonized injection and production conditions
6
作者 Jun Zhou Zichen Li +4 位作者 Shitao Liu Chengyu Li Yunxiang Zhao Zonghang Zhou Guangchuan Liang 《Natural Gas Industry B》 2025年第2期234-250,共17页
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject... The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS. 展开更多
关键词 Underground natural gas storage Surface injection and production pipeline Parameter optimization Hybrid genetic algorithm
在线阅读 下载PDF
Microscopic experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs
7
作者 JIANG Tongwen QI Huan +4 位作者 WANG Zhengmao LI Yiqiang WANG Jinfang LIU Zheyu CAO Jinxin 《Petroleum Exploration and Development》 SCIE 2024年第1期203-212,共10页
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic... Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee. 展开更多
关键词 water-invaded gas-reservoir underground gas storage cyclical injection-production gas-water contact gas storage and production rate UGS capacity expansion control method
在线阅读 下载PDF
Evaluation of the dynamic sealing performance of cap rocks of underground gas storage under multi-cycle alternating loads 被引量:5
8
作者 Lidong Mi Yandong Guo +3 位作者 Yanfeng Li Daqian Zeng Chunhua Lu Guangquan Zhang 《Energy Geoscience》 EI 2024年第4期125-132,共8页
The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in po... The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system. 展开更多
关键词 Alternating load Cap rock Dynamic sealing performance Underground gas storage
在线阅读 下载PDF
Sealing capacity evaluation of underground gas storage under intricate geological conditions 被引量:3
9
作者 Guangquan Zhang Sinan Zhu +4 位作者 Daqian Zeng Yuewei Jia Lidong Mi Xiaosong Yang Junfa Zhang 《Energy Geoscience》 EI 2024年第3期234-243,共10页
Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulat... Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations. 展开更多
关键词 Underground gas storage Sealing capacity GEOMECHANICS Maximum operational pressure
在线阅读 下载PDF
Investigations of methane adsorption characteristics on marine-continental transitional shales and gas storage capacity models considering pore evolution
10
作者 Chen-Gang Lu Xian-Ming Xiao +4 位作者 Zhen-Qian Xue Zhang-Xin Chen Yin-Tao Dong Yue Feng Gang Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2273-2286,共14页
Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marin... Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas. 展开更多
关键词 High-pressure methane adsorption Marine-continental transitional shale gas Ono-Kondo model Adsorption thermodynamics gas storage capacity model
原文传递
Key technologies for salt-cavern underground gas storage construction and evaluation and their application 被引量:1
11
作者 Wanyan Qiqi Ding Guosheng +3 位作者 Zhao Yan Li Kang Deng Jingen Zheng Yali 《Natural Gas Industry B》 2018年第6期623-630,共8页
Salt-cavern underground gas storage is technically faced with non-uniform distribution of stratified salt rocks,complex solution mining mechanism,difficult control of solution mining process,less operation safety and ... Salt-cavern underground gas storage is technically faced with non-uniform distribution of stratified salt rocks,complex solution mining mechanism,difficult control of solution mining process,less operation safety and stability of caverns and difficult reconstruction and utilization of old caverns.In view of these technical difficulties,the design concept was fully updated based on the design experience and field practice of Jintan gas storage in Jiangsu,for purpose of maximizing salt layer utilization ratio,improving solution mining efficiency,shortening construction time and ensuring cavity safety.Based on the updated design concept,five series of key technologies were proposed in site evaluation,cavern design and control,stability assessment and storage capacity parameter design,old cavern screening and utilization,and gas storage operation and monitoring.The following results were obtained from the actual application of these key technologies to the Jintan gas storage.First,the actual drilling coincidence rate of geological program is high.Second,the cavern is morphologically coincident with the design.Third,the cavern deformation retract rate is in line with the stability evaluation result.Fourth,old caverns are successfully reconstructed and utilized.Fifth,the arrangement of the monitoring network ensures the operation safety of salt-cavern underground gas storage and makes an important contribution to the peak shaving and supply guarantee of natural gas in the Yangtze River Delta region.In conclusion,the research results provide guidance for the design and engineering implementation of salt-cavern underground gas storage construction program,as well as a theoretical and technical support for the construction of similar gas storages. 展开更多
关键词 Salt-cavern underground gas storage gas storage building technology Site evaluation Solution mining Leaching control Stability evaluation Old cavern utilization Monitoring network Jintan gas storage
在线阅读 下载PDF
Integrated construction technology for natural gas gravity drive and underground gas storage 被引量:3
12
作者 JIANG Tongwen WANG Zhengmao WANG Jinfang 《Petroleum Exploration and Development》 CSCD 2021年第5期1227-1236,共10页
Based on the mechanisms of gravity displacement,miscibility,viscosity reduction,and imbibition in natural gas flooding,an integrated reservoir construction technology of oil displacement and underground gas storage(UG... Based on the mechanisms of gravity displacement,miscibility,viscosity reduction,and imbibition in natural gas flooding,an integrated reservoir construction technology of oil displacement and underground gas storage(UGS)is proposed.This paper systemically describes the technical connotation,site selection principle and optimization process of operation parameters of the gas storage,and advantages of this technology.By making full use of the gravity displacement,miscibility,viscosity reduction,and imbibition features of natural gas flooding,the natural gas can be injected into oil reservoir to enhance oil recovery and build strategic gas storage at the same time,realizing the win-win situation of oil production and natural gas peak shaving.Compared with the gas reservoir storage,the integrated construction technology of gas storage has two profit models:increasing crude oil production and gas storage transfer fee,so it has better economic benefit.At the same time,in this kind of gas storage,gas is injected at high pressure in the initial stage of its construction,gas is injected and produced in small volume in the initial operation stage,and then in large volume in the middle and late operation stage.In this way,the gas storage wouldn’t have drastic changes in stress periodically,overcoming the shortcomings of large stress variations of gas reservoir storage during injection-production cycle due to large gas injection and production volume.The keys of this technology are site selection and evaluation of oil reservoir,and optimization of gravity displacement,displacement pressure,and gas storage operation parameters,etc.The pilot test shows that the technology has achieved initial success,which is a new idea for the rapid development of UGS construction in China. 展开更多
关键词 natural gas drive gravity displacement integrated gas storage construction gas storage parameter optimization EOR
在线阅读 下载PDF
Stress sensitivity of formation during multi-cycle gas injection and production in an underground gas storage rebuilt from gas reservoirs 被引量:1
13
作者 LI Jiqiang ZHAO Guanqun +5 位作者 QI Zhilin YIN Bingyi XU Xun FANG Feifei YANG Shenyao QI Guixue 《Petroleum Exploration and Development》 CSCD 2021年第4期968-977,共10页
Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of... Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles. 展开更多
关键词 gas storage rebuilt from gas reservoirs multi-cycle injection and production reservoir stress sensitivity injection and production capacity gas storage layer selection
在线阅读 下载PDF
Simulation of pore space production law and capacity expansion mechanism of underground gas storage
14
作者 LIU Tao LI Yiqiang +7 位作者 DING Guosheng WANG Zhengmao SHI Lei LIU Zheyu TANG Xiang CAO Han CAO Jinxin HUANG Youqing 《Petroleum Exploration and Development》 CSCD 2022年第6期1423-1429,共7页
One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carrie... One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carried out using one-dimensional long core and large two-dimensional flat physical models to find out the effects of reservoir physical properties and injection-production balance time on reservoir pore utilization efficiency,effective reservoir capacity formation and capacity-reaching cycle.The results show that reservoir physical properties and formation water saturation are the main factors affecting the construction and operation of gas-reservoir type underground gas storage.During the construction and operation of gas-reservoir type gas storage,the reservoir space can be divided into three types of working zones:high efficiency,low efficiency and ineffective ones.The higher the reservoir permeability,the higher the pore utilization efficiency is,the smaller the ineffective working zone is,or there is no ineffective working zone;the smaller the loss of injected gas is,and the higher the utilization rate of pores is.The better the reservoir physical properties,the larger the reservoir space and the larger the final gas storage capacity is.The higher the water saturation of the reservoir,the more the gas loss during gas storage capacity building and operation is.Optimizing injection-production regime to discharge water and reduce water saturation is an effective way to reduce gas loss in gas storage.In the process of multiple cycles of injection and production,there is a reasonable injection-production balance time,further extending the injection-production balance period after reaching the reasonable time has little contribution to the expansion of gas storage capacity. 展开更多
关键词 gas reservoir-type underground gas storage multi-cycle injection and production injection-production equilibrium time pore utilization efficiency effective gas storage volume
在线阅读 下载PDF
RECENT ADVANCES IN HYDRATE-BASED TECHNOLOGIES FOR NATURAL GAS STORAGE——A REVIEW 被引量:28
15
作者 Yasuhiko H.Mori 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期1-17,共17页
Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries.The technologies ne... Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries.The technologies necessary for realizing this possibility may be classified into those relevant to the four serial processes (a) the formation of a hydrate, (b) the processing (dewatering, pelletizing, etc. ) of the formed hydrate, (c) the storage and transportation of the processed hydrate, and (d) the regasification (dissociation) of the hydrate. The technological development of any of these processes is still at an early stage. For hydrate formation, for example, various rival operations have been proposed. However,many of them have never been subjected to actual tests for practical use. More efforts are required for examining the different hydrate-formation technologies and for rating them by comparison. The general design of the processing of the formed hydrate inevitably depends on both the hydrate-formation process and the storage/transportation process, hence it has a wide variability. The major uncertainty in the storage-process design lies in the as-yet unclarified utility of the "self-preservation" effect of the naturalgas hydrates. The process design as well as the relevant cost evaluation should strongly depend on whether the hydrates are well preserved at atmospheric pressure in large-scale storage facilities. The regasification process has been studied less extensively than the former processes. The state of the art of the technological development in each of the serial processes is reviewed, placing emphasis on the hydrate formation process. 展开更多
关键词 into rate or AS of that RECENT ADVANCES IN HYDRATE-BASED TECHNOLOGIES FOR NATURAL gas storage A REVIEW been
在线阅读 下载PDF
Theoretical research on gas seepage in the formations surrounding bedded gas storage salt cavern 被引量:7
16
作者 Xiang-Sheng Chen Yin-Ping Li +2 位作者 Ya-Long Jiang Yuan-Xi Liu Tao Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1766-1778,共13页
When constructing salt cavern gas or petroleum storage in lacustrine sedimentary salt formations rich in mudstone interlayers, the influence of the sealing performance of interlayers and salt-mud interface on the stor... When constructing salt cavern gas or petroleum storage in lacustrine sedimentary salt formations rich in mudstone interlayers, the influence of the sealing performance of interlayers and salt-mud interface on the storage tightness should be considered adequately. In order to reveal the gas seepage in deep formations surrounding bedded salt cavern underground storage, a leakage analysis model was established based on the characteristics of a low dip angle and the interbedded structure of bedded rock salt. The gas seepage governing equations for one-dimensional and plane radial flow were derived and solved. A gas seepage simulation experiment was conducted to demonstrate the accuracy and reliability of the theoretical calculation results. The error of the seepage range was approximately 6.70%, which is acceptable. The analysis and calculation results indicate that the motion equation of gas in deep formations satisfies a non-Darcy's law with a threshold pressure gradient and slippage effect. The sufficient condition for the gas flow to stop is that the pressure gradient is equal to the threshold pressure gradient.The relationship between the leakage range and operating time is a positive power function, that is, the leakage range gradually increases with time and eventually stabilizes. As the seepage range increases, the seepage pressure decreases sharply during the early stage, and then decreases gradually until the flow stops.Combining the research results with engineering applications, three quantitative evaluation indexes named the maximum admissible leakage range, leakage volume and leakage rate are proposed for the tightness evaluation of gas storage salt cavern during their operating stage. These indexes can be used directly in actual engineering applications and can be compared with the key design parameters stipulated in the relevant specifications. This work is expected to provide theoretical and technical support for the gas loss and tightness evaluation of gas storage salt caverns. 展开更多
关键词 gas storage salt cavern SEEPAGE TIGHTNESS Non-Darcy's law LEAKAGE
原文传递
Influence of hysteretic stress path behavior on seal integrity during gas storage operation in a depleted reservoir 被引量:5
17
作者 Pierre Jeanne Yingqi Zhang Jonny Rutqvist 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期886-899,共14页
In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Unde... In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Underground Storage Facility in Los Angeles County(California,USA),which was converted into an underground gas storage facility in 1975 after 20 years of oil and gas production.In our simulations,the geomechanical behavior of the sand reservoir is modeled using two models:(1)a linear elastic model(non-hysteretic stress path)that does not take into consideration irreversible deformation,and(2)a plastic cap mechanical model which considers changes in rock elastic properties due to irreversible deformations caused by plastic reservoir compaction(hysteretic stress path).It shows that the irreversible compaction of the geological layer over geologic time and during the reservoir depletion can have important consequences on stress tensor orientation and magnitude.Ignoring depletion-induced irreversible compaction can lead to an over-estimation of the calculation of the maximum working reservoir pressure.Moreover,this irreversible compaction may bring the nearby faults closer to reactivation.However,regardless of the two models applied,the geomechanical analysis shows that for the estimated stress conditions applied in this study,the Honor Rancho Underground Storage Facility is being safely operated at pressures much below what would be required to compromise the seal integrity. 展开更多
关键词 gas storage Stress path Geomechanical simulation Caprock integrity Fault stability Modified cam-clay model Honor rancho underground storage facility
在线阅读 下载PDF
Mechanism of gas-water flow at pore-level in aquifer gas storage 被引量:4
18
作者 石磊 王皆明 +2 位作者 廖广志 熊伟 高树生 《Journal of Central South University》 SCIE EI CAS 2013年第12期3620-3626,共7页
By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The res... By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The results show that gas-water distribution styles are divided into continuous phase type and separate phase type. The water lock exists in pore and throat during the process of gas-water displacement, and it reduces the gas flow-rate and has some effects on the recovery efficiency during the operation of gas storage. According to the experimental results of aquifer gas storage in X area, the differences in available extent among reservoirs are significant, and the availability of pore space is 33% 45%. 展开更多
关键词 aquifer gas storage gas-water flow injection-withdrawal cycle etched-glass micromodel water lock
在线阅读 下载PDF
Investigation on Gas Storage in Methane Hydrate 被引量:4
19
作者 ZhigaoSun RongshengMa +2 位作者 ShuanshiFan KaihuaGuo RuzhuWang 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第2期107-112,共6页
The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rat... The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300×10-6 and 500×10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates. 展开更多
关键词 methane hydrate SURFACTANT CYCLOPENTANE gas storage
在线阅读 下载PDF
Investigation of flue gas water-alternating gas (flue gas–WAG) injection for enhanced oil recovery and multicomponent flue gas storage in the post-waterflooding reservoir 被引量:3
20
作者 Zhou-Hua Wang Bo-Wen Sun +5 位作者 Ping Guo Shuo-Shi Wang Huang Liu Yong Liu Dai-Yu Zhou Bo Zhou 《Petroleum Science》 SCIE CAS CSCD 2021年第3期870-882,共13页
Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of f... Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of fue gas water-alternating gas(fue gas-WAG)injection after continuous waterfooding in an oil reservoir,a long core fooding system was built.The experimental results showed that the oil recovery factor of fue gas-WAG fooding was increased by 21.25%after continuous waterfooding and fue gas-WAG fooding could further enhance oil recovery and reduce water cut signifcantly.A novel material balance model based on storage mechanism was developed to estimate the multicomponent fue gas storage capacity and storage capacity of each component of fue gas in reservoir oil,water and as free gas in the post-waterfooding reservoir.The ultimate storage ratio of fue gas is 16%in the fue gas-WAG fooding process.The calculation results of fue gas storage capacity showed that the injection gas storage capacity mainly consists of N_(2) and CO_(2),only N_(2) exists as free gas phase in cores,and other components of injection gas are dissolved in oil and water.Finally,injection strategies from three perspectives for fue gas storage,EOR,and combination of fue gas storage and EOR were proposed,respectively. 展开更多
关键词 Flue gas storage Enhanced oil recovery Flue gas water-alternating gas Material balance model Injection strategy
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部