We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(...We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(2)-algebras yield the same condensed topological phase under a two-dimensional anyon condensation process.The relations between different condensable algebras can be translated into their module categories,interpreted physically as gapped domain walls in topological orders.As concrete examples,we interpret the categories of quantum doubles of finite groups and examples beyond group symmetries.Our framework fully elucidates the interplay among condensable𝐸E_(1)-algebras in C,condensable𝐸E_(2)-algebras in C up to 2-Morita equivalence,and Lagrangian algebras in C⊠C.展开更多
We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider th...We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider the propagation of electrons in graphene as relativistic fermion quasi-particles,and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.Next,to solve and analyze the Dirac equation,we obtain the eigenvalues and eigenvectors using the Legendre differential equation.After that,we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal n and spin-orbit k.Then,the values of the energy spectrum for the ground state and the first excited state are calculated,and the wave functions and the corresponding probabilities are plotted in terms of coordinates r.In what follows,we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors K_(x) and K_(y).Finally,the energy bands are plotted in terms of the wave vectors K_(x) and K_(y) with and without the magnetic term.展开更多
We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-20...We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from 19F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fraetionalization in the fractional quantum Hall state.展开更多
We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian i...We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.展开更多
In graphene,conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature.For this reason,the bounding of electrons in graphene in th...In graphene,conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature.For this reason,the bounding of electrons in graphene in the form of geometries of quantum dots is impossible.In gapless graphene,due to its unique electronic band structure,there is a minimal conductivity at Dirac points,that is,in the limit of zero doping.This creates a problem for using such a highly motivated new material in electronic devices.One of the ways to overcome this problem is the creation of a band gap in the graphene band structure,which is made by inversion symmetry breaking(symmetry of sublattices).We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for "local chemical potential" and "local gap".The calculated energy spectrum exhibits quite different features with and without the perturbations.A characteristic equation for bound states(BSs) has been obtained.It is surprisingly found that the relation between the radial functions of sublattices wave functions,i.e.,f_m~+(r),g_m~+(r),and f_m^-(r),g_m^-(r),can be established by SO(2) group.展开更多
We study the effect of electron-phonon (e-ph) interaction on the elastic and inelastic electronic transport of a nanowire connected to two simple rigid leads within the tight-binding and harmonic approximations. The...We study the effect of electron-phonon (e-ph) interaction on the elastic and inelastic electronic transport of a nanowire connected to two simple rigid leads within the tight-binding and harmonic approximations. The model is constructed using Green's function and multi-channel techniques, taking into account the local and nonlocal e-ph interactions. Then, we examine the model for the gapless (simple chain) and gapped (PA-like nanowire) systems. The results show that the tunneling conductance is improved by the e-ph interaction in both local and nonlocal regimes, while for the resonance conductance, the coherent part mainly decreases and the incoherent part increases. At the corresponding energies which depend on the phonon frequency, two dips in the elastic and two peaks in the inelastic conductance spectra appear. The reason is the absorption of the phonon by the electron in transition into inelastic channels.展开更多
【目的】应用线粒体DNA条形码技术对尤犀金龟属(Eupatorus Burmeister,1847)昆虫物种界定进行探索,以解决该属物种形态鉴定困难的问题。【方法】基于尤犀金龟属物种线粒体cox1和cox2基因序列数据集,使用Automatic Barcode Gap Discovery...【目的】应用线粒体DNA条形码技术对尤犀金龟属(Eupatorus Burmeister,1847)昆虫物种界定进行探索,以解决该属物种形态鉴定困难的问题。【方法】基于尤犀金龟属物种线粒体cox1和cox2基因序列数据集,使用Automatic Barcode Gap Discovery(ABGD)和Bayesian Poisson Tree Processes(bPTP)对3个形态种进行分子物种界定,并与形态学鉴定结果进行比较。【结果】使用ABGD方法时,cox1数据集的界定结果与形态学鉴定结果一致,cox2数据集的界定结果与形态学鉴定结果存在差异;使用bPTP方法时,2种数据集的界定结果均远高于形态学鉴定结果,且均存在不同程度的过度划分。【结论】cox1是更适合用于鉴定尤犀金龟属昆虫的DNA条形码,使用ABGD方法时,其数据集界定结果与形态学鉴定结果一致。利用分子界定与形态特征鉴定相结合,可极大地提高鉴定效率和准确性。展开更多
Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders....Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors––NeuroD1, Ascl1, and Dlx2––in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore,we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4(astrocyte endfeet signal), CX43(gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into preexisting neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain.展开更多
Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other...Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.展开更多
基金supported by Research Grants Council(RGC),University Grants Committee(UGC)of Hong Kong(ECS No.24304722)。
文摘We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(2)-algebras yield the same condensed topological phase under a two-dimensional anyon condensation process.The relations between different condensable algebras can be translated into their module categories,interpreted physically as gapped domain walls in topological orders.As concrete examples,we interpret the categories of quantum doubles of finite groups and examples beyond group symmetries.Our framework fully elucidates the interplay among condensable𝐸E_(1)-algebras in C,condensable𝐸E_(2)-algebras in C up to 2-Morita equivalence,and Lagrangian algebras in C⊠C.
文摘We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider the propagation of electrons in graphene as relativistic fermion quasi-particles,and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.Next,to solve and analyze the Dirac equation,we obtain the eigenvalues and eigenvectors using the Legendre differential equation.After that,we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal n and spin-orbit k.Then,the values of the energy spectrum for the ground state and the first excited state are calculated,and the wave functions and the corresponding probabilities are plotted in terms of coordinates r.In what follows,we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors K_(x) and K_(y).Finally,the energy bands are plotted in terms of the wave vectors K_(x) and K_(y) with and without the magnetic term.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300502,2016YFA0300503,2016YFA0300604,2016YF0300300 and 2016YFA0300802the National Natural Science Foundation of China under Grant Nos 11421092,11474330,11574359,11674406,11374346 and 11674375+3 种基金the National Basic Research Program of China(973 Program)under Grant No 2015CB921304the National Thousand-Young-Talents Program of Chinathe Strategic Priority Research Program(B) of the Chinese Academy of Sciences under Grant Nos XDB07020000,XDB07020200 and XDB07020300supported by DOE-BES under Grant No DE-FG02-04ER46148
文摘We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from 19F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fraetionalization in the fractional quantum Hall state.
文摘We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.
文摘In graphene,conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature.For this reason,the bounding of electrons in graphene in the form of geometries of quantum dots is impossible.In gapless graphene,due to its unique electronic band structure,there is a minimal conductivity at Dirac points,that is,in the limit of zero doping.This creates a problem for using such a highly motivated new material in electronic devices.One of the ways to overcome this problem is the creation of a band gap in the graphene band structure,which is made by inversion symmetry breaking(symmetry of sublattices).We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for "local chemical potential" and "local gap".The calculated energy spectrum exhibits quite different features with and without the perturbations.A characteristic equation for bound states(BSs) has been obtained.It is surprisingly found that the relation between the radial functions of sublattices wave functions,i.e.,f_m~+(r),g_m~+(r),and f_m^-(r),g_m^-(r),can be established by SO(2) group.
基金Project supported by the Iranian Nanotechnology Initiativesupported by Shahrekord University through a research fund
文摘We study the effect of electron-phonon (e-ph) interaction on the elastic and inelastic electronic transport of a nanowire connected to two simple rigid leads within the tight-binding and harmonic approximations. The model is constructed using Green's function and multi-channel techniques, taking into account the local and nonlocal e-ph interactions. Then, we examine the model for the gapless (simple chain) and gapped (PA-like nanowire) systems. The results show that the tunneling conductance is improved by the e-ph interaction in both local and nonlocal regimes, while for the resonance conductance, the coherent part mainly decreases and the incoherent part increases. At the corresponding energies which depend on the phonon frequency, two dips in the elastic and two peaks in the inelastic conductance spectra appear. The reason is the absorption of the phonon by the electron in transition into inelastic channels.
文摘【目的】应用线粒体DNA条形码技术对尤犀金龟属(Eupatorus Burmeister,1847)昆虫物种界定进行探索,以解决该属物种形态鉴定困难的问题。【方法】基于尤犀金龟属物种线粒体cox1和cox2基因序列数据集,使用Automatic Barcode Gap Discovery(ABGD)和Bayesian Poisson Tree Processes(bPTP)对3个形态种进行分子物种界定,并与形态学鉴定结果进行比较。【结果】使用ABGD方法时,cox1数据集的界定结果与形态学鉴定结果一致,cox2数据集的界定结果与形态学鉴定结果存在差异;使用bPTP方法时,2种数据集的界定结果均远高于形态学鉴定结果,且均存在不同程度的过度划分。【结论】cox1是更适合用于鉴定尤犀金龟属昆虫的DNA条形码,使用ABGD方法时,其数据集界定结果与形态学鉴定结果一致。利用分子界定与形态特征鉴定相结合,可极大地提高鉴定效率和准确性。
基金supported by the Key Project of Guangzhou City,No.202206060002Science and Technology Project of Guangdong Province,No.2018B030332001Guangdong Provincial Pearl River Project,No.2021ZT09Y552 (all to GC)。
文摘Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors––NeuroD1, Ascl1, and Dlx2––in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore,we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4(astrocyte endfeet signal), CX43(gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into preexisting neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain.
基金financially supported by the Key Research and Development Program of Ningbo(Grant No.2023Z098)Natural Science Foundation of Inner Mongolia(Grant No.2023MS05040)+1 种基金Shenyang Collaborative Innovation Center Project for Multiple Energy Fields Composite Processing of Special Materials(Grant No.JG210027)Shenyang Key Technology Special Project of The Open Competition Mechanism to Select the Best Solution(Grant Nos.2022210101000827,2022-0-43-048).
文摘Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.