期刊文献+
共找到42,250篇文章
< 1 2 250 >
每页显示 20 50 100
Performance of digital data acquisition system in gamma-ray spectroscopy 被引量:3
1
作者 Di-Wen Luo Hong-Yi Wu +9 位作者 Zhi-Huan Li Chuan Xu Hui Hua Xiang-Qing Li Xiang Wang Shuang-Quan Zhang Zhi-Qiang Chen Chen-Guang Wu Yu Jin Jie Lin 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第8期12-22,共11页
A newly developed digital data acquisition system,which is based on the digital pulse processor Pixie-16 modules by XIA LLC,was tested with the c-ray detector array of the China Institute of Atomic Energy using the cr... A newly developed digital data acquisition system,which is based on the digital pulse processor Pixie-16 modules by XIA LLC,was tested with the c-ray detector array of the China Institute of Atomic Energy using the cray source and in-beam c-rays.A comparison between this digital data acquisition system and the conventional analog data acquisition system was made.At a low count rate,both systems exhibit good and comparable energy resolutions.At a high count rate above 8.8 k/s,while the energy resolution obtained by the analog system deteriorates significantly,the energy resolution obtained by the digital system is nearly unchanged.Meanwhile,experimental data with higher statistics can be collected by the digital system.The advantage of this digital system over the conventional analog system can be ascribed to its excellent capability of handling pile-up pulses at higher count rates,and the fact that it has nearly no dead time in data transmission and conversion. 展开更多
关键词 Digital data acquisition system Gamma spectroscopy Energy resolution
在线阅读 下载PDF
Machine learning application in NaI(Tl)gamma-ray spectroscopy for radionuclide identification:A systematic review
2
作者 Yuan Sun Fei Tuo +2 位作者 Wuhui Lin Qiang Zhou Baolu Yang 《Radiation Medicine and Protection》 2025年第5期251-258,共8页
Radionuclide identification using NaI(Tl)gamma-ray spectroscopy is critical in nuclear security,environmental monitoring,and medicine.While cost-effective and efficient,NaI(Tl)detectors are limited by low energy resol... Radionuclide identification using NaI(Tl)gamma-ray spectroscopy is critical in nuclear security,environmental monitoring,and medicine.While cost-effective and efficient,NaI(Tl)detectors are limited by low energy resolution,spectral noise,and environmental variability.This systematic review evaluates how machine learning(ML)advancements address these limitations.Our analysis reveals that deep learning models—particularly convolutional neural networks(CNNs),hybrid architectures,and other advanced Deep Networks—excel in analyzing low-resolution spectra,achieving over 95%accuracy even under complex conditions(e.g.,shielding effects,low-count spectra).Hybrid models which integrate CNNs with traditional algorithms demonstrate superior robustness and explainability.Nevertheless,traditional ML methods(e.g.,SVMs)remain valuable for limited datasets or real-time applications.Despite these methodological advances,the field continues to face overarching challenges including data scarcity,model generalization,and explainability,necessitating standardized datasets and physics-informed ML frameworks.ML bridges the performance gap between NaI(Tl)and high-resolution detectors,enabling portable,automated solutions.Future research should prioritize hybrid models,dataset standardization,and optimization for field deployment,enhancing nuclear safety and environmental monitoring capabilities. 展开更多
关键词 Radionuclide identification NaI(Tl)gamma-ray spectroscopy Machine learning Deep learning
原文传递
A machine learning case study in nuclear fusion:Assessment of the absolute deuterium-tritium fusion power of ITER with gamma-ray spectroscopy
3
作者 C.Landsmeer G.Marcer +14 位作者 A.Dal Molin M.Rebai D.Rigamonti B.Coriton G.Gorini M.Guerini Rocco A.Kovalev A.Muraro M.Nocente E.Perelli Cippo A.Polevoi O.Putignano F.Scioscioli G.Croci M.Tardocchi 《Energy and AI》 2025年第3期134-141,共8页
Nuclear fusion holds great potential as a carbon-neutral means of electricity production.However,technical aspects of its implementation remain challenging.The real-time measurement of the fusion power released during... Nuclear fusion holds great potential as a carbon-neutral means of electricity production.However,technical aspects of its implementation remain challenging.The real-time measurement of the fusion power released during Deuterium-Tritium(DT)fusion is one such aspect.The use of tools from artificial intelligence may help to solve this issue.Recently,during experiments performed at the Joint European Torus,a novel method was developed to measure the fusion power in magnetic confinement fusion devices.Said method exploits the fact that gammarays released by the DT fusion reaction can be registered with a gamma-ray spectrometer.Expanding on this work,a machine learning algorithm was developed to estimate DT fusion power at ITER by use of the Radial Gamma-Ray Spectrometer(RGRS)measurements,as well as the magnetic equilibrium as an additional source of information.The algorithm was trained and tested on a set of 75 simulations of ITER DT plasma scenarios.By testing the algorithm by repeated 5-fold cross-validation,the average deviation of the estimated fusion power from the reference was found to be 0.32%,while the relative error had a standard deviation of 0.97%.When statistical fluctuations were included in the analysis,the lowest measurable fusion power resulted to be around 30MW,making the RGRS suitable for the fusion power measurement requirements at ITER.This project demonstrated that a machine learning approach leads to promising results when coupled with prior knowledge and the integration of various kinds of sensor and simulation data.This and related algorithms may eventually contribute to the development of fusion power as a reliable,carbon-neutral source of energy. 展开更多
关键词 Machine learning Principal component analysis Nuclear fusion ITER gamma-ray spectrometer Deuterium tritium Fusion power
在线阅读 下载PDF
Tender energy spectroscopy beamline at the Shanghai Synchrotron Radiation Facility
4
作者 Shu‑Min Yang Ling‑Ling Guo +12 位作者 Bing Nan Ying Zhao Yan‑Qing Wu Zhi Guo Chen Tian Bo Zhao Chao‑Fan Xue Jun Zhao Shuang Song Zhen‑Ye Liang Li‑Na Li Yong Wang Ren‑Zhong Tai 《Nuclear Science and Techniques》 2026年第1期94-106,共13页
This paper describes the design and performance of the tender energy spectroscopy beamline(BL16U1),a phase Ⅱ beamline,at the Shanghai Synchrotron Radiation Facility.The beamline,based on an in-vacuum undulator source... This paper describes the design and performance of the tender energy spectroscopy beamline(BL16U1),a phase Ⅱ beamline,at the Shanghai Synchrotron Radiation Facility.The beamline,based on an in-vacuum undulator source with 26 mm period,provides an operable energy range between 2.1 keV and 16 keV,covering the K-edges of P to Rb and L3-edges of Zr to Bi.The principal optical elements of the beamline are a toroidal mirror,a liquid nitrogen-cooled double-crystal monochromator,a high-harmonic-rejection mirror,and two pairs of Kirkpatrick–Baez(KB)mirrors.Three end-stations,including non-focusing,microprobe,and sub-microprobe types,are installed on the beamline.X-ray fluorescence(XRF)and X-ray absorption spectroscopy(XAS),including X-ray absorption near-edge structure(XANES)and extended X-ray absorption fine structure(EXAFS),are performed under vacuum or He atmosphere at the non-focusing end-station(with a beam spot size of∼670μm×710μm).Using two KB mirrors systems,micro-XRF(μXRF)mapping and micro-XANES(μXANES)studies can be performed with a spot size of approximately∼3.3μm×1.3μm at the microprobe end-station and with a smaller spot size of∼0.5μm×0.25μm at the sub-microprobe end-station.The non-focusing end-station was officially opened to users in January 2024.The microprobe and sub-microprobe end-stations will be opened to users in the near future.This paper presents the characteristics,short-term technical developments,and early experimental results of this new beamline. 展开更多
关键词 Tender energy X-ray spectroscopy X-ray fluorescence SSRF X-ray absorption spectroscopy(XAS) MICROPROBE
在线阅读 下载PDF
Commissioning of a radiofrequency quadrupole cooler‑buncher for collinear laser spectroscopy
5
作者 Yin‑Shen Liu Han‑Rui Hu +15 位作者 Xiao‑Fei Yang Wen‑Cong Mei Yang‑Fan Guo Zhou Yan Shao‑Jie Chen Shi‑Wei Bai Shu‑Jing Wang Yong‑Chao Liu Peng Zhang Dong‑Yang Chen Yan‑Lin Ye Qi‑Te Li Jie Yang Stephan Malbrunot‑Ettenauer Simon Lechner Carina Kanitz 《Nuclear Science and Techniques》 2026年第1期193-201,共9页
A RadioFrequency Quadrupole(RFQ)cooler-buncher system was developed and implemented in a collinear laser spectroscopy setup.This system converts a continuous ion beam into short bunches while enhancing the beam qualit... A RadioFrequency Quadrupole(RFQ)cooler-buncher system was developed and implemented in a collinear laser spectroscopy setup.This system converts a continuous ion beam into short bunches while enhancing the beam quality and reducing the energy spread.The functionality of the RFQ cooler buncher was verified through offline tests with stable rubidium and indium beams delivered from a surface ion source and a laser ablation ion source,respectively.Bunched ion beams with a full width at half maximum of approximately 2μs in the time-of-flight spectrum were successfully achieved with a transmission efficiency exceeding 60%.The implementation of the RFQ cooler-buncher system also significantly improved the overall transmission efficiency of the collinear laser spectroscopy setup. 展开更多
关键词 Radiofrequency quadrupole cooler-buncher Collinear laser spectroscopy Hyperfine structure Time of flight
在线阅读 下载PDF
Solution-processed lead-free bulk 0D Cs3Cu2I5 single crystal for indirect gamma-ray spectroscopy application 被引量:4
6
作者 Qiang Xu Juan Wang +8 位作者 Qindong Zhang Xiao Ouyang Maheng Ye Weiting Xie Xuewen Yan Deyuan Li Xiaoping Ouyang Xiaobing Tang Xiaodong Zhang 《Photonics Research》 SCIE EI CAS CSCD 2021年第3期351-356,共6页
Bulk scintillators that are with high density,low cost,and fine pulse-height energy spectral resolution,and are nonhygroscopic and user friendly,are desired for high-energy gamma-ray spectroscopy application.Recently,... Bulk scintillators that are with high density,low cost,and fine pulse-height energy spectral resolution,and are nonhygroscopic and user friendly,are desired for high-energy gamma-ray spectroscopy application.Recently,low-cost solution-processed perovskite nanoscintillators have been demonstrated with outstanding performances for indirect low-energy X-ray detection;however,the stability and thickness are not suitable for high-energy gamma-ray detection.Here,we report scintillation performances of a low-cost solution-processed bulk 0D Cs3Cu2I5 single crystal.The self-trapped exciton emission results in a large Stokes shift (109 nm) that is reabsorption free.A broad X-ray excited emission matches well with the sensitivity of a silicon photodiode.The unique Cs+ surrounded isolated [Cu2I5]3-cluster scintillator provides ultra-stability in air and strong radiation hardness under high-dose gammaray exposure from a 60Co source.This solution-processed Cs3Cu2I5 scintillator is expected with low-cost and has detection performances comparable to commercial alkali-halide scintillator products. 展开更多
关键词 spectroscopy stability CRYSTAL
原文传递
Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork 被引量:1
7
作者 Runqiu Wang Shunda Qiao +1 位作者 Ying He Yufei Ma 《Opto-Electronic Advances》 2025年第4期6-16,共11页
In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical sim... In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical simulation model was established to optimize the design of the QTF structure.In the simulation of quartz-enhanced photoacoustic spectroscopy(QEPAS)technology,the maximum stress and the surface charge density of the four-prong QTF demonstrated increases of 11.1-fold and 15.9-fold,respectively,compared to that of the standard two-prong QTF.In the simulation of light-induced thermoelastic spectroscopy(LITES)technology,the surface temperature difference of the four-prong QTF was found to be 11.4 times greater than that of the standard QTF.Experimental results indicated that the C_(2)H_(2)-QEPAS system based on this innovative design improved the signal-to-noise-ratio(SNR)by 4.67 times compared with the standard QTF-based system,and the SNR could increase up to 147.72 times when the four-prong QTF was equipped with its optimal acoustic micro-resonator(AmR).When the average time of the system reached 370 s,the system achieved a MDL as low as 21 ppb.The four-prong QTF-based C_(2)H_(2)-LITES system exhibited a SNR improvement by a factor of 4.52,and a MDL of 96 ppb was obtained when the average time of the system reached 100 s.The theoretical and experimental results effectively demonstrated the superiority of the four-prong QTF in the field of laser spectroscopy sensing. 展开更多
关键词 four-prong quartz tuning fork C2H2 detection quartz-enhanced photoacoustic spectroscopy light-induced thermoelastic spectroscopy
在线阅读 下载PDF
Value of Magnetic Resonance Spectroscopy for Examining Fetal Brain Development in Mid-to Late Pregnancy 被引量:1
8
作者 Dejuan Shan Yi Zhang +3 位作者 Maobo Wang Yanyan Liu Yudong Wang Lianxiang Xiao 《iRADIOLOGY》 2025年第3期209-213,共5页
Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnos... Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment. 展开更多
关键词 CHOLINE CREATINE fetal brain metabolism magnetic resonance spectroscopy N-ACETYLASPARTATE
暂未订购
Development and Application of Cavity-based Absorption Spectroscopy in Atmospheric Chemistry:Recent Progress 被引量:1
9
作者 Weixiong ZHAO Nana YANG +6 位作者 Renzhi HU Bo FANG Jiacheng ZHOU Chuan LIN Feihu CHENG Pinhua XIE Weijun ZHANG 《Advances in Atmospheric Sciences》 2025年第4期605-622,共18页
Atmospheric chemistry research and atmospheric measurement techniques have mutually promoted each other and developed rapidly in China in recent years.Cavity-based absorption spectroscopy,which uses a high-finesse cav... Atmospheric chemistry research and atmospheric measurement techniques have mutually promoted each other and developed rapidly in China in recent years.Cavity-based absorption spectroscopy,which uses a high-finesse cavity to achieve very long absorption path-length,thereby achieving ultra-high detection sensitivity,plays an extremely important role in atmospheric chemistry research.Based on the Beer–Lambert law,this technology has the unique advantages of being non-destructive,chemical-free,and highly selective.It does not require any sample preparation and can quantitatively analyze atmospheric trace gases in real time and in situ.In this paper,we review the following:(1)key technological advances in different cavity-based absorption spectroscopy techniques,including cavity ring-down spectroscopy,cavityenhanced absorption spectroscopy,cavity attenuated phase shift spectroscopy,and their extensions;and(2)applications of these techniques in the detection of atmospheric reactive species,such as total peroxy radical,formaldehyde,and reactive nitrogen(e.g.,NOx,HONO,peroxy nitrates,and alkyl nitrates).The review systematically introduces cavity-based absorption spectroscopy techniques and their applications in atmospheric chemistry,which will help promote further communication and cooperation in the fields of laser spectroscopy and atmospheric chemistry. 展开更多
关键词 cavity-based absorption spectroscopy atmospheric chemistry atmospheric reactive species
在线阅读 下载PDF
Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm 被引量:1
10
作者 Xin-Ying Yu Jian Chen +2 位作者 Lian-Yu Li Feng-En Chen Qiang He 《World Journal of Gastroenterology》 2025年第14期32-46,共15页
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e... BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification. 展开更多
关键词 Raman spectroscopy Esophageal neoplasia Early diagnosis Deep learning algorithm Rapid pathologic grading
暂未订购
Coulomb attraction driven spontaneous molecule-hotspot pairing enables universal,fast,and large-scale uniform single-molecule Raman spectroscopy 被引量:1
11
作者 Lihong Hong Haiyao Yang +2 位作者 Jianzhi Zhang Zihan Gao Zhi-Yuan Li 《Opto-Electronic Advances》 2025年第7期37-49,共13页
Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrate... Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrates.Here we present a SM-SERS scheme that involves simultaneously giant chemical enhancement from WS22D materials,giant electromagnetic enhancement from plasmonic nanogap hot spot,and inhibition of molecular fluorescence influence under near-infrared laser illumination.Remarkably we find Coulomb attraction between analyte and gold nanoparticle can trigger spontaneous formation of molecule-hotspot pairing with high precision,stability and robustness.The scheme has enabled realization of universal,robust,fast,and large-scale uniform SM-SERS detection for three Raman molecules of rhodamine B,rhodamine 6G,and crystal violet with a very low detection limit of 10−16 M and at a very fast spectrum acquisition time of 50 ms. 展开更多
关键词 single-molecule Raman spectroscopy Coulomb attractions electromagnetic enhancement chemical enhancement near-infrared laser illumination
在线阅读 下载PDF
Development and prospect of near-infrared spectroscopy-assisted schizophrenia diagnosis based on bibliometrics
12
作者 Yan Zhang Hao-Yu Xing Juan Yan 《World Journal of Psychiatry》 SCIE 2025年第1期7-11,共5页
In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique a... In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique advantages in the auxiliary diagnosis of schizophrenia,and the introduction of bibliometrics has provided a macro perspective for research in this field.Despite the opportunities brought about by these technological developments,remaining challenges require multidi-sciplinary approach to devise a reliable and accurate diagnosis system for schizo-phrenia.Nonetheless,NIRS-assisted technology is expected to contribute to the division of methods for early intervention and treatment of schizophrenia. 展开更多
关键词 BIBLIOMETRICS SCHIZOPHRENIA Near-infrared spectroscopy Diagnostic technique Data analysis
暂未订购
Using deep learning to reduce nonlinearity effects in nearinfrared spectroscopy for accurate quantification of tobacco leaf pectin concentrations
13
作者 Wenhui Yang Limin Shao 《中国科学技术大学学报》 北大核心 2025年第6期57-66,56,I0002,共12页
In the near-infrared(NIR)spectroscopic data of complex sample systems,such as tobacco leaves,nonlinearity is fairly significant between the absorbance and concentration.This nonlinearity severely degrades the quantita... In the near-infrared(NIR)spectroscopic data of complex sample systems,such as tobacco leaves,nonlinearity is fairly significant between the absorbance and concentration.This nonlinearity severely degrades the quantitative results of traditional methods,such as partial least squares regression(PLS),which can be used to construct linear models.The problem was addressed in this study by using deep learning(DL).We employed three different DL models:a one-dimensional convolutional neural network(1D CNN),a deep neural network(DNN),and a stacked autoencoder with feedforward neural networks(SAE-FNNs).By carefully selecting and tuning the architectures and parameters of these models,we were able to find the most suitable model for dealing with such nonlinear relationships.Our experimental findings reveal that both the DNN and the SAE-FNN models excel in addressing the nonlinear issues of pectin concentration in tobacco,surpassing the performance of the classic linear model(PLS).Specifically,the DNN model stands out for its low average root mean squared error of prediction(RMSEP)value and small standard deviation(SD)of RMSEPs,leading to a tighter and more centered distribution of residuals in the prediction set.These DL models not only proficiently identify complex patterns within NIR data but also boast high prediction accuracy and fast implementation,demonstrating their effectiveness in analytical applications. 展开更多
关键词 quantitative regression NONLINEARITY deep learning methods near-infrared spectroscopy
在线阅读 下载PDF
Infrared spectroscopic analysis of O-H bond dynamics in one-dimensional confined water and bulk water
14
作者 ZHANG Lei WANG Tian-Qi FAN Yan-Ping 《红外与毫米波学报》 北大核心 2025年第1期78-85,共8页
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c... In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology. 展开更多
关键词 one-dimensional confined water infrared spectroscopy hydrogen bonds
在线阅读 下载PDF
Unveiling solid-solid contact states in all-solid-state lithium batteries:An electrochemical impedance spectroscopy viewpoint 被引量:1
15
作者 Jin-Liang Li Liang Shen +9 位作者 Zi-Ning Cheng Jun-Dong Zhang Ling-Xuan Li Yu-Tong Zhang Yan-Bin Gao Chunli Guo Xiang Chen Chen-Zi Zhao Rui Zhang Qiang Zhang 《Journal of Energy Chemistry》 2025年第2期16-22,I0002,共8页
All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid... All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs. 展开更多
关键词 Electrochemical impedance spectroscopy All-solid-state lithium batteries Solid-solid contacts Finite element method Equivalent circuit model Distribution of relaxation times
在线阅读 下载PDF
Optical Spectroscopy Methods for Determining Semiconductor Bandgaps
16
作者 ZHANG Yong 《发光学报》 北大核心 2025年第7期1271-1282,共12页
Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic a... Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic absorption,(2)modulation spectroscopy,and(3)the most widely used Tauc-plot.The excitonic absorption is based on a many-particle theory,which is physically the most correct approach,but requires more stringent crystalline quality and appropriate sample preparation and experimental implementation.The Tauc-plot is based on a single-particle theo⁃ry that neglects the many-electron effects.Modulation spectroscopy analyzes the spectroscopy features in the derivative spectrum,typically,of the reflectance and transmission under an external perturbation.Empirically,the bandgap ener⁃gy derived from the three approaches follow the order of E_(ex)>E_(MS)>E_(TP),where three transition energies are from exci⁃tonic absorption,modulation spectroscopy,and Tauc-plot,respectively.In principle,defining E_(g) as the single-elec⁃tron bandgap,we expect E_(g)>E_(ex),thus,E_(g)>E_(TP).In the literature,E_(TP) is often interpreted as E_(g),which is conceptual⁃ly problematic.However,in many cases,because the excitonic peaks are not readily identifiable,the inconsistency be⁃tween E_(g) and E_(TP) becomes invisible.In this brief review,real world examples are used(1)to illustrate how excitonic absorption features depend sensitively on the sample and measurement conditions;(2)to demonstrate the differences between E_(ex),E_(MS),and E_(TP) when they can be extracted simultaneously for one sample;and(3)to show how the popular⁃ly adopted Tauc-plot could lead to misleading results.Finally,it is pointed out that if the excitonic absorption is not ob⁃servable,the modulation spectroscopy can often yield a more useful and reasonable bandgap than Tauc-plot. 展开更多
关键词 semiconductor material bandgap excitonic absorption modulation spectroscopy Tauc plot
在线阅读 下载PDF
Oxidative Degradation of Plastic Bottle Tops in an Arid, Terrestrial Environment—Identifying Oxidative Degradation by Infrared Spectroscopy
17
作者 Mahra Al Kaabi Vijo Poulose Thies Thiemann 《Journal of Environmental Protection》 2025年第2期66-86,共21页
This communication looks at the photo-oxidation of polythene and polypropylene plastic bottle tops that are placed on soil in a hot arid environment. The degree of oxidation of the plastic is monitored by FT-IR spectr... This communication looks at the photo-oxidation of polythene and polypropylene plastic bottle tops that are placed on soil in a hot arid environment. The degree of oxidation of the plastic is monitored by FT-IR spectroscopy. It is noted that while different bottle top types photo-oxidize at different rates, all show an appreciable level of oxidation after half a year of exposure to the environment. The oxidation leads to brittleness of the plastic, which leads to fissure formation in bottle tops of little thickness. This leads to fragmentation of the material upon impact, making plastic bottle tops an appreciable source of microplastics. 展开更多
关键词 PLASTICS Polythene POLYPROPYLENE Plastic Bottle Tops FRAGMENTATION Microplastics Infrared spectroscopy Oxidation Index
在线阅读 下载PDF
New Insights on Gamma-Ray Burst Radiation Mechanisms from Multiwavelength Observations
18
作者 Yu-Hua Yao Fang-Sheng Min +1 位作者 Shi Chen Yi-Qing Guo 《Research in Astronomy and Astrophysics》 2025年第2期1-10,共10页
The study of high-energy gamma-ray emission from gamma-ray bursts(GRBs)involves complex synchrotron radiation and synchrotron self-Compton(SSC)scattering mechanisms with multiple parameters exhibiting a wide distribut... The study of high-energy gamma-ray emission from gamma-ray bursts(GRBs)involves complex synchrotron radiation and synchrotron self-Compton(SSC)scattering mechanisms with multiple parameters exhibiting a wide distribution.Recent advancements in GRB research,particularly the observation of very high energy(VHE,>100 Ge V)radiation,have ushered in a new era of multiwavelength exploration,offering fresh perspectives and limitations for understanding GRB radiation mechanisms.This study aimed to leverage VHE observations to refine constraints on synchrotron+SSC radiation from electrons accelerated by forward shocks.By analyzing two external environments—the uniform interstellar medium and stratified stellar wind medium,we conducted spectral and variability fitting for five specific bursts(GRB 180720B,GRB 190114C,GRB 190829A,GRB 201216C,and GRB 221009A)to identify the optimal parameters characterizing these events.A comparative analysis of model parameter distributions with and without VHE radiation observations reveals that the magnetic energy equipartition factorεBis more concentrated with VHE emissions.This suggests that VHE emissions may offer greater constraints on this microphysical parameter.Additionally,we found that the energy budget between VHE and ke V–Me Vγ-ray emissions under the SSC radiation exhibits an almost linear relationship,which may serve as a tool to differentiate radiation mechanisms.We anticipate future statistical analyses of additional VHE bursts to validate our findings. 展开更多
关键词 (transients:)gamma-ray bursts radiation mechanisms:non-thermal gamma-rays:ISM
在线阅读 下载PDF
Research on Denoising Method of Agricultural Product Terahertz Spectroscopy Based on Adaptive Signal Decomposition
19
作者 WU Jing-zhu LIU Yu-hao +3 位作者 YANG Yi XIE Chuan-luan L Zhong-ming LI Yi-can 《光谱学与光谱分析》 北大核心 2025年第12期3575-3584,共10页
To address the issues of peak overlap caused by complex matrices in agricultural product terahertz(THz)spectral signals and the dynamic,nonlinear interference induced by environmental and system noise,this study explo... To address the issues of peak overlap caused by complex matrices in agricultural product terahertz(THz)spectral signals and the dynamic,nonlinear interference induced by environmental and system noise,this study explores the feasibility of adaptive-signal-decomposition-based denoising methods to improve THz spectral quality.THz time-domain spectroscopy(THz-TDS)combined with an attenuated total reflection(ATR)accessory was used to collect THz absorbance spectra from 48 peanut samples.Taking the quantitative prediction model of peanut moisture content based on THz-ATR as an example,wavelet transform(WT),empirical mode decomposition(EMD),local mean decomposition(LMD),and its improved methods-segmented local mean decomposition(SLMD)and piecewise mirror extension local mean decomposition(PME-LMD)-were employed for spectral denoising.The applicability of different denoising methods was evaluated using a support vector regression(SVR)model.Experimental results show that the peanut moisture content prediction model constructed after PME-LMD denoising achieved the best performance,with a root mean square error(RMSE),coefficient of determination(R^(2)),and mean absolute percentage error(MAPE)of 0.010,0.912,and 0.040,respectively.Compared with traditional methods,PME-LMD significantly improved spectral quality and model prediction performance.The PME-LMD denoising strategy proposed in this study effectively suppresses non-uniform noise interference in THz spectral signals,providing an efficient and accurate preprocessing method for THz spectral analysis of agricultural products.This research provides theoretical support and technical guidance for the application of THz technology for detecting agricultural product quality. 展开更多
关键词 Terahertz spectroscopy Denoising method Agricultural products Support vector regression Piecewise mirror extension local mean decomposition
在线阅读 下载PDF
The shadow and gamma-ray bursts of a Schwarzschild black hole in asymptotic safety
20
作者 Yuxuan Shi Hongbo Cheng 《Communications in Theoretical Physics》 2025年第2期119-129,共11页
The effects and rules of the dimensionless parameterξon neutrino annihilation v+v→e^(-)+e^(+)dominated gamma-ray bursts are analysed and investigated within the context of black holes in asymptotic safety.We also co... The effects and rules of the dimensionless parameterξon neutrino annihilation v+v→e^(-)+e^(+)dominated gamma-ray bursts are analysed and investigated within the context of black holes in asymptotic safety.We also computationally model photon orbits around black holes,as photons and neutrinos have the same geodesic equations near black holes.We show that the black hole shadow radius decreases with increasingξ.Calculations are made to determine the temperature of the accretion disk surrounding the black hole and the ratio Q/Q_(Newt)of energy deposition per unit time and compared to that of the Newtonian scenario.The accretion disk temperature peaks at a higher temperature due to quantum gravity corrections,which increases the probability of neutrino emission from the black hole.It is interesting to note that larger quantum gravity effects cause the ratio value to significantly decline.In the neutrinoantineutrino annihilation process,the energy deposition rate is sufficient even while the energy conversion is inhibited because of quantum corrections.Gamma-ray bursts might originate from the corrected annihilation process.Additionally,we examine the derivative dQ/dr about the star radius r.The findings demonstrate that the ratio is lowered by the black hole's quantum influence.The neutrino pair annihilation grows weaker the more prominent the influence of quantum gravity. 展开更多
关键词 quantum gravity black hole gamma-ray burst
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部