In this article, the population-size-dependent bisexual Galton-Watson processes are considered. Under some suitable conditions on the mating functions and the offspring distribution, existence of the limit of mean gro...In this article, the population-size-dependent bisexual Galton-Watson processes are considered. Under some suitable conditions on the mating functions and the offspring distribution, existence of the limit of mean growth rate per mating unit is proved. And based on the limit, a criterion to identify whether the process admits ultimate extinct with probability one is obtained.展开更多
Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental con...Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in...In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.展开更多
Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remain...Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
In this article the supercritical bisexual Galton-Watson branching processes with the immigration of mating units is considered. A necessary condition for the almost sure convergence, and a sufficient condition for th...In this article the supercritical bisexual Galton-Watson branching processes with the immigration of mating units is considered. A necessary condition for the almost sure convergence, and a sufficient condition for the L^1 convergence are given for the process with the suitably normed condition.展开更多
In this paper, we investigate Galton-Watson branching processes in random environments. In the case where the environmental process is a Markov chain which is positive recurrent or has a transition matrix Q (θ,α) su...In this paper, we investigate Galton-Watson branching processes in random environments. In the case where the environmental process is a Markov chain which is positive recurrent or has a transition matrix Q (θ,α) such that sup_θ Q (θ,α)> 0 for some α, we prove that the model has the asymptotic behavior being similar to that of Galton-Watson branching processes. In other case where the environments are non-stationary independent, the sufficient conditions are obtained for certain extinction and uncertain extinction for the model.展开更多
The spectral radiuses of Galton-Watson branching processes which describes the speed of the process escaping from any state are calculated. Under the condition of irreducibility,it is show that this is equal to the sp...The spectral radiuses of Galton-Watson branching processes which describes the speed of the process escaping from any state are calculated. Under the condition of irreducibility,it is show that this is equal to the spectral radius of Jacobi matrix of its generating function.展开更多
In this paper,we form a method to calculate the probability generating function of the total progeny of multitype branching process.As examples,we calculate probability generating function of the total progeny of the ...In this paper,we form a method to calculate the probability generating function of the total progeny of multitype branching process.As examples,we calculate probability generating function of the total progeny of the multitype branching processes within random walk which could stay at its position and(2-1) random walk.Consequently,we could give the probability generating functions and the distributions of the first passage time of corresponding random walks.Especially,for recurrent random walk which could stay at its position with probability 0 〈 r 〈 1,we show that the tail probability of the first passage time decays as 2/√π(1-r)1/√n= when n →∞.展开更多
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properti...This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the...The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research.Based on local strong-motion data,we used the IDS(Iterative Deconvolution and Stacking)method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd.The rupture of the mainshock was mainly unilateral,lasting 31 s,with a maximum slip of 2m,and the depth of the large slip zone is about 41–49 km.There is a clear difference between the rupture depth of the main shock and the two strong aftershocks.The depths of the large slip zones of the latter two are 3–9 km and 8–10 km,respectively.There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks,and we believe that there are two seismogenic fault zones in the study area,the deep and the shallow fault zone.The slip of the deep faults activates the shallow faults.展开更多
基金Supported by the National Natural Science Foundation of China (10871200)
文摘In this article, we obtain the central limit theorem and the law of the iterated logarithm for Galton-Watson processes in i.i.d, random environments.
文摘In this article, the population-size-dependent bisexual Galton-Watson processes are considered. Under some suitable conditions on the mating functions and the offspring distribution, existence of the limit of mean growth rate per mating unit is proved. And based on the limit, a criterion to identify whether the process admits ultimate extinct with probability one is obtained.
文摘Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia,Grant No.KFU250098.
文摘In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.
基金This study is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.013-0001.
文摘Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
文摘In this article the supercritical bisexual Galton-Watson branching processes with the immigration of mating units is considered. A necessary condition for the almost sure convergence, and a sufficient condition for the L^1 convergence are given for the process with the suitably normed condition.
文摘In this paper, we investigate Galton-Watson branching processes in random environments. In the case where the environmental process is a Markov chain which is positive recurrent or has a transition matrix Q (θ,α) such that sup_θ Q (θ,α)> 0 for some α, we prove that the model has the asymptotic behavior being similar to that of Galton-Watson branching processes. In other case where the environments are non-stationary independent, the sufficient conditions are obtained for certain extinction and uncertain extinction for the model.
文摘The spectral radiuses of Galton-Watson branching processes which describes the speed of the process escaping from any state are calculated. Under the condition of irreducibility,it is show that this is equal to the spectral radius of Jacobi matrix of its generating function.
基金Supported by National Nature Science Foundation of China(Grant No.11226199)
文摘In this paper,we form a method to calculate the probability generating function of the total progeny of multitype branching process.As examples,we calculate probability generating function of the total progeny of the multitype branching processes within random walk which could stay at its position and(2-1) random walk.Consequently,we could give the probability generating functions and the distributions of the first passage time of corresponding random walks.Especially,for recurrent random walk which could stay at its position with probability 0 〈 r 〈 1,we show that the tail probability of the first passage time decays as 2/√π(1-r)1/√n= when n →∞.
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
基金supported by NNSF of China(6053408070571079)Open Fundation of SKLSE of Wuhan University (2008-07-03)
文摘This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
基金sponsored by the Earthquake Spark Technology Project(XH23051B)。
文摘The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research.Based on local strong-motion data,we used the IDS(Iterative Deconvolution and Stacking)method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd.The rupture of the mainshock was mainly unilateral,lasting 31 s,with a maximum slip of 2m,and the depth of the large slip zone is about 41–49 km.There is a clear difference between the rupture depth of the main shock and the two strong aftershocks.The depths of the large slip zones of the latter two are 3–9 km and 8–10 km,respectively.There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks,and we believe that there are two seismogenic fault zones in the study area,the deep and the shallow fault zone.The slip of the deep faults activates the shallow faults.