The element-free Galerkin(EFG)method,which constructs shape functions via moving least squares(MLS)approximation,represents a fundamental and widely studied meshless method in numerical computation.Although it achieve...The element-free Galerkin(EFG)method,which constructs shape functions via moving least squares(MLS)approximation,represents a fundamental and widely studied meshless method in numerical computation.Although it achieves high computational accuracy,the shape functions are more complex than those in the conventional finite element method(FEM),resulting in great computational requirements.Therefore,improving the computational efficiency of the EFG method represents an important research direction.This paper systematically reviews significant contributions fromdomestic and international scholars in advancing the EFGmethod.Including the improved element-free Galerkin(IEFG)method,various interpolating EFG methods,four distinct complex variable EFG methods,and a series of dimension splitting meshless methods.In the numerical examples,the effectiveness and efficiency of the three methods are validated by analyzing the solutions of the IEFG method for 3D steadystate anisotropic heat conduction,3D elastoplasticity,and large deformation problems,as well as the performance of two-dimensional splitting meshless methods in solving the 3D Helmholtz equation.展开更多
In this paper,we design a new error estimator and give a posteriori error analysis for a poroelasticity model.To better overcome“locking phenomenon”on pressure and displacement,we proposed a new error estimators bas...In this paper,we design a new error estimator and give a posteriori error analysis for a poroelasticity model.To better overcome“locking phenomenon”on pressure and displacement,we proposed a new error estimators based on multiphysics discontinuous Galerkin method for the poroelasticity model.And we prove the upper and lower bound of the proposed error estimators,which are numerically demonstrated to be computationally very efficient.Finally,we present numerical examples to verify and validate the efficiency of the proposed error estimators,which show that the adaptive scheme can overcome“locking phenomenon”and greatly reduce the computation cost.展开更多
We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-St...We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.展开更多
In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension s...In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension splitting method(DSM).By using the DSM,a 3D problem is converted to a series of 2D ones,and the IEFG method with a weighted orthogonal function as the basis function and the cubic spline function as the weight function is applied to simulate these 2D problems.The essential boundary conditions are treated by the penalty method.The splitting direction uses the finite difference method(FDM),which can combine these 2D problems into a discrete system.Finally,the system equation of the 3D elasticity problem is obtained.Some specific numerical problems are provided to illustrate the effectiveness and advantages of the FEFG method for 3D elasticity by comparing the results of the FEFG method with those of the IEFG method.The convergence and relative error norm of the FEFG method for elasticity are also studied.展开更多
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II...In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.展开更多
An automatically adaptive element free method is presented to analyze the seismic response of liquefiable soils. The method is based on the element free Galerkin method (EFGM) and the fission procedure that is part ...An automatically adaptive element free method is presented to analyze the seismic response of liquefiable soils. The method is based on the element free Galerkin method (EFGM) and the fission procedure that is part of h-refinement, indicated by error estimation. In the proposed method, a posteriori error estimate procedure that depends on the energy norm of stress and the T-Belytschko (TB) stress recovery scheme is incorporated. The effective cyclic elasto-plastic constitutive model is used to describe the nonlinear behavior of the saturated soil. The governing equations are established by u-p formulation. The proposed method can effectively avoid the volumetric locking due to large deformation that usually occurs in numerical computations using the finite element method (FEM). The efficiency of the proposed method is demonstrated by evaluating the seismic response of an embankment and comparing it to results obtained through FEM. It is shown that the proposed method provides an accurate seismic analysis of saturated soil that includes the effects of liquefaction .展开更多
The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field ...The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field and thermal radiation.Initially,a similarity transformation is used to convert momentum and energy conservation equations in partial differential forms into non-linear ordinary differential equations (ODE) applying meaningful boundary conditions.In order to obtain the non-linear ODEs analytically,Galerkin method (GM) is employed.Subsequently,the ODEs are also solved by a reliable numerical solution.In order to test the accuracy,precision and reliability of the analytical method,results of the analytical analysis are compared with the numerical results.With respect to the comparisons,fairly good compatibilities with insignificant errors are observed.Eventually,the impacts of effective parameters including magnetic and radiation parameters and nanofluid volume fraction on the velocity,skin friction coefficient and Nusselt number distributions are comprehensively described.Based on the results,it is revealed that with increasing the role of magnetic force,velocity profile,skin friction coefficient and thermal performance descend.Radiation parameter has insignificant influence on velocity profile while it obviously has augmentative and decreasing effects on skin friction and Nusselt number,respectively.展开更多
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec...This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.展开更多
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method o...A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative information to keep WENO re- construction stencils in the von Neumann neighborhood. A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils, making higher-order scheme stable and simplifying the reconstruction process at the same time. The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement. Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy, the designed HWENO limiters can simul- taneously obtain uniform high order accuracy and sharp, es- sentially non-oscillatory shock transition.展开更多
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar...In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.展开更多
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f...In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.展开更多
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c...In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.展开更多
An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adap...An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.展开更多
Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference meth...Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference method and finite element method,the enforcement of boundary conditions in deep neural networks is highly nontrivial.One general strategy is to use the penalty method.In the work,we conduct a comparison study for elliptic problems with four different boundary conditions,i.e.,Dirichlet,Neumann,Robin,and periodic boundary conditions,using two representative methods:deep Galerkin method and deep Ritz method.In the former,the PDE residual is minimized in the least-squares sense while the corresponding variational problem is minimized in the latter.Therefore,it is reasonably expected that deep Galerkin method works better for smooth solutions while deep Ritz method works better for low-regularity solutions.However,by a number of examples,we observe that deep Ritz method can outperform deep Galerkin method with a clear dependence of dimensionality even for smooth solutions and deep Galerkin method can also outperform deep Ritz method for low-regularity solutions.Besides,in some cases,when the boundary condition can be implemented in an exact manner,we find that such a strategy not only provides a better approximate solution but also facilitates the training process.展开更多
Accurate wave propagation simulation in anisotropic media is important for forward modeling, migration and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is extended to solve t...Accurate wave propagation simulation in anisotropic media is important for forward modeling, migration and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is extended to solve the elastic wave equations in 2D transversely isotropic media. The spatial discretization is based on the numerical flux discontinuous Galerkin scheme. An explicit weighted two-step iterative Runge-Kutta method is used as time-stepping algorithm. The weighted RKDG method has good flexibility and applicability of dealing with undulating geometries and boundary conditions. To verify the correctness and effectiveness of this method, several numerical examples are presented for elastic wave propagations in vertical transversely isotropic and tilted transversely isotropic media. The results show that the weighted RKDG method is promising for solving wave propagation problems in complex anisotropic medium.展开更多
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cell...In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.展开更多
This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been...This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chemically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic properties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicomponent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.展开更多
The vibration of a plate resting on elastic foundations under a moving load is of great significance in the design of many engineering fields,such as the vehicle-pavement system and the aircraft-runway system.Pavement...The vibration of a plate resting on elastic foundations under a moving load is of great significance in the design of many engineering fields,such as the vehicle-pavement system and the aircraft-runway system.Pavements or runways are always laminated structures.The Galerkin truncation method is widely used in the research of vibration.The number of truncation terms directly affects the convergence and accuracy of the response results.However,the selection of the number of truncation terms has not been clearly stated.A nonlinear viscoelastic foundation model under a moving load is established.Based on the natural frequency of linear undisturbed derivative systems,the truncation terms are used to determine the convergence of vibration response.The criterion for the convergence of the Galerkin truncation term is presented.The scheme is related to the natural frequency with high efficiency and practicability.Through the dynamic response of the sandwich beam under a moving load,the feasibility of the scheme is verified.The effects of different system parameters on the scheme and the truncation convergence of dynamic response are presented.The research in this paper can be used as a reference for the study of the vibration of elastic foundation plates.Especially,the model established and the truncation analysis method proposed are helpful for studying the vibration of vehicle-pavement system and related systems.展开更多
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin...We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.展开更多
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul...Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12271341).
文摘The element-free Galerkin(EFG)method,which constructs shape functions via moving least squares(MLS)approximation,represents a fundamental and widely studied meshless method in numerical computation.Although it achieves high computational accuracy,the shape functions are more complex than those in the conventional finite element method(FEM),resulting in great computational requirements.Therefore,improving the computational efficiency of the EFG method represents an important research direction.This paper systematically reviews significant contributions fromdomestic and international scholars in advancing the EFGmethod.Including the improved element-free Galerkin(IEFG)method,various interpolating EFG methods,four distinct complex variable EFG methods,and a series of dimension splitting meshless methods.In the numerical examples,the effectiveness and efficiency of the three methods are validated by analyzing the solutions of the IEFG method for 3D steadystate anisotropic heat conduction,3D elastoplasticity,and large deformation problems,as well as the performance of two-dimensional splitting meshless methods in solving the 3D Helmholtz equation.
基金supported by the National Natural Science Foundation of China(Grant Nos.12371393 and 11971150)Natural Science Foundation of Henan(Grant No.242300421047).
文摘In this paper,we design a new error estimator and give a posteriori error analysis for a poroelasticity model.To better overcome“locking phenomenon”on pressure and displacement,we proposed a new error estimators based on multiphysics discontinuous Galerkin method for the poroelasticity model.And we prove the upper and lower bound of the proposed error estimators,which are numerically demonstrated to be computationally very efficient.Finally,we present numerical examples to verify and validate the efficiency of the proposed error estimators,which show that the adaptive scheme can overcome“locking phenomenon”and greatly reduce the computation cost.
基金supported by the National Natural Science Foundation of China(Grant Nos.92252201 and 11721202)the Fundamental Research Funds for the Central Universities.
文摘We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.
基金supported by the National Natural Science Foundation of China(Grant Nos.52004169 and 11571223).
文摘In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension splitting method(DSM).By using the DSM,a 3D problem is converted to a series of 2D ones,and the IEFG method with a weighted orthogonal function as the basis function and the cubic spline function as the weight function is applied to simulate these 2D problems.The essential boundary conditions are treated by the penalty method.The splitting direction uses the finite difference method(FDM),which can combine these 2D problems into a discrete system.Finally,the system equation of the 3D elasticity problem is obtained.Some specific numerical problems are provided to illustrate the effectiveness and advantages of the FEFG method for 3D elasticity by comparing the results of the FEFG method with those of the IEFG method.The convergence and relative error norm of the FEFG method for elasticity are also studied.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.
基金the National Natural Science Foundation of China Under Grant No. 50779003and50639010Natural Science Foundation of Liaoning Proviance Under Grant No. 20071085
文摘An automatically adaptive element free method is presented to analyze the seismic response of liquefiable soils. The method is based on the element free Galerkin method (EFGM) and the fission procedure that is part of h-refinement, indicated by error estimation. In the proposed method, a posteriori error estimate procedure that depends on the energy norm of stress and the T-Belytschko (TB) stress recovery scheme is incorporated. The effective cyclic elasto-plastic constitutive model is used to describe the nonlinear behavior of the saturated soil. The governing equations are established by u-p formulation. The proposed method can effectively avoid the volumetric locking due to large deformation that usually occurs in numerical computations using the finite element method (FEM). The efficiency of the proposed method is demonstrated by evaluating the seismic response of an embankment and comparing it to results obtained through FEM. It is shown that the proposed method provides an accurate seismic analysis of saturated soil that includes the effects of liquefaction .
文摘The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field and thermal radiation.Initially,a similarity transformation is used to convert momentum and energy conservation equations in partial differential forms into non-linear ordinary differential equations (ODE) applying meaningful boundary conditions.In order to obtain the non-linear ODEs analytically,Galerkin method (GM) is employed.Subsequently,the ODEs are also solved by a reliable numerical solution.In order to test the accuracy,precision and reliability of the analytical method,results of the analytical analysis are compared with the numerical results.With respect to the comparisons,fairly good compatibilities with insignificant errors are observed.Eventually,the impacts of effective parameters including magnetic and radiation parameters and nanofluid volume fraction on the velocity,skin friction coefficient and Nusselt number distributions are comprehensively described.Based on the results,it is revealed that with increasing the role of magnetic force,velocity profile,skin friction coefficient and thermal performance descend.Radiation parameter has insignificant influence on velocity profile while it obviously has augmentative and decreasing effects on skin friction and Nusselt number,respectively.
文摘This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.
基金supported by the National Basic Research Program of China (2009CB724104)the National Natural Science Foundation of China (90716010)
文摘A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative information to keep WENO re- construction stencils in the von Neumann neighborhood. A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils, making higher-order scheme stable and simplifying the reconstruction process at the same time. The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement. Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy, the designed HWENO limiters can simul- taneously obtain uniform high order accuracy and sharp, es- sentially non-oscillatory shock transition.
基金supported by the National Natural Science Foundation of China (Grant No.11026223)the Shanghai Leading Academic Discipline Project,China (Grant No.S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No.SHUCX112359)
文摘In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No. SHUCX112359)
文摘In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11171208 and U1433104)
文摘In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.
基金supported by the National Natural Science Foundation of China(11272152)
文摘An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.
基金the grants NSFC 11971021National Key R&D Program of China(No.2018YF645B0204404)NSFC 11501399(R.Du)。
文摘Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference method and finite element method,the enforcement of boundary conditions in deep neural networks is highly nontrivial.One general strategy is to use the penalty method.In the work,we conduct a comparison study for elliptic problems with four different boundary conditions,i.e.,Dirichlet,Neumann,Robin,and periodic boundary conditions,using two representative methods:deep Galerkin method and deep Ritz method.In the former,the PDE residual is minimized in the least-squares sense while the corresponding variational problem is minimized in the latter.Therefore,it is reasonably expected that deep Galerkin method works better for smooth solutions while deep Ritz method works better for low-regularity solutions.However,by a number of examples,we observe that deep Ritz method can outperform deep Galerkin method with a clear dependence of dimensionality even for smooth solutions and deep Galerkin method can also outperform deep Ritz method for low-regularity solutions.Besides,in some cases,when the boundary condition can be implemented in an exact manner,we find that such a strategy not only provides a better approximate solution but also facilitates the training process.
基金supported by the National Natural Science Foundation of China(Grant Nos.41974114,41604105)the Fundamental Research Funds for the Central Universities(2020YQLX01)+1 种基金supported in part by the Project of Cultivation for Young Top-notch Talents of Beijing Municipal Institutions under Grant BPHR202203047in part by the Young Elite Scientists Sponsorship Program by BAST.
文摘Accurate wave propagation simulation in anisotropic media is important for forward modeling, migration and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is extended to solve the elastic wave equations in 2D transversely isotropic media. The spatial discretization is based on the numerical flux discontinuous Galerkin scheme. An explicit weighted two-step iterative Runge-Kutta method is used as time-stepping algorithm. The weighted RKDG method has good flexibility and applicability of dealing with undulating geometries and boundary conditions. To verify the correctness and effectiveness of this method, several numerical examples are presented for elastic wave propagations in vertical transversely isotropic and tilted transversely isotropic media. The results show that the weighted RKDG method is promising for solving wave propagation problems in complex anisotropic medium.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61105130 and 61175124)
文摘In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.
基金supported by an Early Career Faculty grant from NASA's Space Technology Research Grants Programprovided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center
文摘This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chemically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic properties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicomponent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.
基金The authors gratefully acknowledge the support of the National Science Fund for Distinguished Young Scholars(No.12025204).
文摘The vibration of a plate resting on elastic foundations under a moving load is of great significance in the design of many engineering fields,such as the vehicle-pavement system and the aircraft-runway system.Pavements or runways are always laminated structures.The Galerkin truncation method is widely used in the research of vibration.The number of truncation terms directly affects the convergence and accuracy of the response results.However,the selection of the number of truncation terms has not been clearly stated.A nonlinear viscoelastic foundation model under a moving load is established.Based on the natural frequency of linear undisturbed derivative systems,the truncation terms are used to determine the convergence of vibration response.The criterion for the convergence of the Galerkin truncation term is presented.The scheme is related to the natural frequency with high efficiency and practicability.Through the dynamic response of the sandwich beam under a moving load,the feasibility of the scheme is verified.The effects of different system parameters on the scheme and the truncation convergence of dynamic response are presented.The research in this paper can be used as a reference for the study of the vibration of elastic foundation plates.Especially,the model established and the truncation analysis method proposed are helpful for studying the vibration of vehicle-pavement system and related systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471063)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2015jcyj BX0083)the Educational Commission Foundation of Chongqing City,China(Grant No.KJ1600330)
文摘We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.
基金Project supported by the National 973 Program (No.2004CB719402), the National Natural Science Foundation of China (No. 10372030)the Open Research Projects supported by the Project Fund of the Hubei Province Key Lab of Mechanical Transmission & Manufacturing Engineering Wuhan University of Science & Technology (No.2003A16).
文摘Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.