期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Gaining-Sharing Knowledge Based Algorithm for Solving Stochastic Programming Problems
1
作者 Prachi Agrawal Khalid Alnowibet Ali Wagdy Mohamed 《Computers, Materials & Continua》 SCIE EI 2022年第5期2847-2868,共22页
This paper presents a novel application of metaheuristic algorithmsfor solving stochastic programming problems using a recently developed gaining sharing knowledge based optimization (GSK) algorithm. The algorithmis b... This paper presents a novel application of metaheuristic algorithmsfor solving stochastic programming problems using a recently developed gaining sharing knowledge based optimization (GSK) algorithm. The algorithmis based on human behavior in which people gain and share their knowledgewith others. Different types of stochastic fractional programming problemsare considered in this study. The augmented Lagrangian method (ALM)is used to handle these constrained optimization problems by convertingthem into unconstrained optimization problems. Three examples from theliterature are considered and transformed into their deterministic form usingthe chance-constrained technique. The transformed problems are solved usingGSK algorithm and the results are compared with eight other state-of-the-artmetaheuristic algorithms. The obtained results are also compared with theoptimal global solution and the results quoted in the literature. To investigatethe performance of the GSK algorithm on a real-world problem, a solidstochastic fixed charge transportation problem is examined, in which theparameters of the problem are considered as random variables. The obtainedresults show that the GSK algorithm outperforms other algorithms in termsof convergence, robustness, computational time, and quality of obtainedsolutions. 展开更多
关键词 gaining-sharing knowledge based algorithm metaheuristic algorithms stochastic programming stochastic transportation problem
在线阅读 下载PDF
Optimum Location of Field Hospitals for COVID-19: A Nonlinear Binary Metaheuristic Algorithm 被引量:2
2
作者 Said Ali Hassan Khalid Alnowibet +1 位作者 Prachi Agrawal Ali Wagdy Mohamed 《Computers, Materials & Continua》 SCIE EI 2021年第7期1183-1202,共20页
Determining the optimum location of facilities is critical in many fields,particularly in healthcare.This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 20... Determining the optimum location of facilities is critical in many fields,particularly in healthcare.This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 2019(COVID-19)pandemic.The used model is the most appropriate among the three most common location models utilized to solve healthcare problems(the set covering model,the maximal covering model,and the P-median model).The proposed nonlinear binary constrained model is a slight modification of the maximal covering model with a set of nonlinear constraints.The model is used to determine the optimum location of field hospitals for COVID-19 risk reduction.The designed mathematical model and the solution method are used to deploy field hospitals in eight governorates in Upper Egypt.In this case study,a discrete binary gaining–sharing knowledge-based optimization(DBGSK)algorithm is proposed.The DBGSK algorithm is based on how humans acquire and share knowledge throughout their life.The DBGSK algorithm mainly depends on two junior and senior binary stages.These two stages enable DBGSK to explore and exploit the search space efficiently and effectively,and thus it can solve problems in binary space. 展开更多
关键词 Facility location nonlinear binary model field hospitals for COVID-19 gaining-sharing knowledge-based metaheuristic algorithm
在线阅读 下载PDF
A Stochastic Flight Problem Simulation to Minimize Cost of Refuelling
3
作者 Said Ali Hassan Khalid Alnowibet +3 位作者 Miral H.Khodeir Prachi Agrawal Adel F.Alrasheedi Ali Wagdy Mohamed 《Computers, Materials & Continua》 SCIE EI 2021年第10期849-871,共23页
Commercial airline companies are continuously seeking to implement strategies for minimizing costs of fuel for their flight routes as acquiring jet fuel represents a significant part of operating and managing expenses... Commercial airline companies are continuously seeking to implement strategies for minimizing costs of fuel for their flight routes as acquiring jet fuel represents a significant part of operating and managing expenses for airline activities.A nonlinear mixed binary mathematical programming model for the airline fuel task is presented to minimize the total cost of refueling in an entire flight route problem.The model is enhanced to include possible discounts in fuel prices,which are performed by adding dummy variables and some restrictive constraints,or by fitting a suitable distribution function that relates prices to purchased quantities.The obtained fuel plan explains exactly the amounts of fuel in gallons to be purchased from each airport considering tankering strategy while minimizing the pertinent cost of the whole flight route.The relation between the amount of extra burnt fuel taken through tinkering strategy and the total flight time is also considered.A case study is introduced for a certain flight rotation in domestic US air transport route.The mathematical model including stepped discounted fuel prices is formulated.The problem has a stochastic nature as the total flight time is a random variable,the stochastic nature of the problem is realistic and more appropriate than the deterministic case.The stochastic style of the problem is simulated by introducing a suitable probability distribution for the flight time duration and generating enough number of runs to mimic the probabilistic real situation.Many similar real application problems are modelled as nonlinear mixed binary ones that are difficult to handle by exact methods.Therefore,metaheuristic approaches are widely used in treating such different optimization tasks.In this paper,a gaining sharing knowledge-based procedure is used to handle the mathematical model.The algorithm basically based on the process of gaining and sharing knowledge throughout the human lifetime.The generated simulation runs of the example are solved using the proposed algorithm,and the resulting distribution outputs for the optimum purchased fuel amounts from each airport and for the total cost and are obtained. 展开更多
关键词 Stochastic flight problem cost of refuelling ferrying strategy tankering discounted prices simulation procedure nonlinear mixed binary model metaheuristic algorithm gaining-sharing knowledge-based algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部