期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A NEW PROOF OF GAFFNEY’S INEQUALITY FOR DIFFERENTIAL FORMS ON MANIFOLDS-WITH-BOUNDARY:THE VARIATIONAL APPROACH à LA KOZONO-YANAGISAWA
1
作者 Siran LI 《Acta Mathematica Scientia》 SCIE CSCD 2022年第4期1427-1452,共26页
Let(M,g_(0))be a compact Riemannian manifold-with-boundary.We present a new proof of the classical Gaffney inequality for differential forms in boundary value spaces over M,via a variational approach a la Kozono-Yanag... Let(M,g_(0))be a compact Riemannian manifold-with-boundary.We present a new proof of the classical Gaffney inequality for differential forms in boundary value spaces over M,via a variational approach a la Kozono-Yanagisawa[Lr-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains,Indiana Univ.Math.J.58(2009),1853-1920],combined with global computations based on the Bochner technique. 展开更多
关键词 gaffney’s inequality differential form Sobolev spaces on manifolds Bochner technique variational approach
在线阅读 下载PDF
BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES 被引量:1
2
作者 闫雪芳 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期891-904,共14页
Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL ge... Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1. 展开更多
关键词 Stein's square function non-negative self-adjoint operator Hardy spaces Davies- gaffney estimate Plancherel type estimate
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部