We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the...We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum.展开更多
An optimal structure design of the lattice mismatched GaInP/GaInAs/Ge solar cell with high photoelectric conversion efficiency was proposed. Two-dimensional Bi2Te3/Sb2Te3 nanosheets were prepared by solvothermal synth...An optimal structure design of the lattice mismatched GaInP/GaInAs/Ge solar cell with high photoelectric conversion efficiency was proposed. Two-dimensional Bi2Te3/Sb2Te3 nanosheets were prepared by solvothermal synthesis method used as thermoelectric(TE) functional materials, which is further hybrid with high conductive reduced graphene oxide(rGO) and carbon nanotubes(CNTs). TE film was then fabricated based on above materials. The power factor of the n-type TE film is 19.31 μW/mK2, and the power factor of the p-type TE film is 97.40 μW/mK2. The flexible TE device was integrated with flexible solar cell. Compared with the single photovoltaic(PV) cell, the efficiency of the as-prepared flexible integrated device measured under the AM1.5 illumination is significantly improved. The efficiency of the two parallel tests is increased from 27.26% and 26.59%, to 29.11% and 28.92%, respectively. The increasing ratio reaches 6.7%-8.8%.展开更多
A typical GaInP/GaInAs/Ge tandem solar cell structure operating under AM0 illumination is proposed, and the current-voltage curves are calculated for different recombination velocities at both front and back-surfaces ...A typical GaInP/GaInAs/Ge tandem solar cell structure operating under AM0 illumination is proposed, and the current-voltage curves are calculated for different recombination velocities at both front and back-surfaces of the three subcells by using a theoretical model including optical and electrical modules.It is found that the surface recombination at the top GaInP cell is the main limitation for obtaining high efficiency tandem solar cells.展开更多
文摘We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum.
文摘An optimal structure design of the lattice mismatched GaInP/GaInAs/Ge solar cell with high photoelectric conversion efficiency was proposed. Two-dimensional Bi2Te3/Sb2Te3 nanosheets were prepared by solvothermal synthesis method used as thermoelectric(TE) functional materials, which is further hybrid with high conductive reduced graphene oxide(rGO) and carbon nanotubes(CNTs). TE film was then fabricated based on above materials. The power factor of the n-type TE film is 19.31 μW/mK2, and the power factor of the p-type TE film is 97.40 μW/mK2. The flexible TE device was integrated with flexible solar cell. Compared with the single photovoltaic(PV) cell, the efficiency of the as-prepared flexible integrated device measured under the AM1.5 illumination is significantly improved. The efficiency of the two parallel tests is increased from 27.26% and 26.59%, to 29.11% and 28.92%, respectively. The increasing ratio reaches 6.7%-8.8%.
文摘A typical GaInP/GaInAs/Ge tandem solar cell structure operating under AM0 illumination is proposed, and the current-voltage curves are calculated for different recombination velocities at both front and back-surfaces of the three subcells by using a theoretical model including optical and electrical modules.It is found that the surface recombination at the top GaInP cell is the main limitation for obtaining high efficiency tandem solar cells.