β-Ga_(2)O_(3)以其较高的导带底(Conduction Band Minimum,CBM)和较低的价带顶(Valence Band Maximum,VBM),赋予其光生电子和空穴较强的还原与氧化能力,但其宽禁带和高载流子复合率限制了在光催化中的应用.金属离子掺杂被认为是提升光...β-Ga_(2)O_(3)以其较高的导带底(Conduction Band Minimum,CBM)和较低的价带顶(Valence Band Maximum,VBM),赋予其光生电子和空穴较强的还原与氧化能力,但其宽禁带和高载流子复合率限制了在光催化中的应用.金属离子掺杂被认为是提升光催化性能的有效途径.本文基于第一性原理系统研究了Sr、Ba、V、Nb、Ta等二十种元素掺杂对β-Ga_(2)O_(3)光催化性能的影响,研究发现:Sr、Nb、Ta、Mn、Fe、Zn、Hg七种元素掺杂β-Ga_(2)O_(3)后,材料除能保持合适的带边位置外,还具有更高的电子空穴分离效率以及更低的形成能,表明这些元素的引入可有效提升β-Ga_(2)O_(3)光催化效率;Nb、Ta掺杂可显著增强材料在红外光区的吸收,Mn、Fe掺杂则显著提升材料在紫外和可见光区的吸收能力,其中,Nb在0.5 eV处光吸收系数高达1.38×10^(5)cm^(−1),Mn、Fe掺杂在3 eV处光吸收系数可达1×10^(5)cm^(−1),在不同波段均呈现出良好的光吸收能力.此外,Hg掺杂表现出跨红外至深紫外的宽波段增强效果,Hg掺杂后,电子空穴相对有效质量高达109,说明Hg掺杂显著提升载流子分离能力,同时由于其在宽波段显著增强的光吸收效果,因此,Hg可作为β-Ga_(2)O_(3)在光催化制氢中理想的金属掺杂元素,以上研究结果为β-Ga_(2)O_(3)光催化分解水制氢研究提供了价值参考.展开更多
The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonizatio...The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.展开更多
文摘β-Ga_(2)O_(3)以其较高的导带底(Conduction Band Minimum,CBM)和较低的价带顶(Valence Band Maximum,VBM),赋予其光生电子和空穴较强的还原与氧化能力,但其宽禁带和高载流子复合率限制了在光催化中的应用.金属离子掺杂被认为是提升光催化性能的有效途径.本文基于第一性原理系统研究了Sr、Ba、V、Nb、Ta等二十种元素掺杂对β-Ga_(2)O_(3)光催化性能的影响,研究发现:Sr、Nb、Ta、Mn、Fe、Zn、Hg七种元素掺杂β-Ga_(2)O_(3)后,材料除能保持合适的带边位置外,还具有更高的电子空穴分离效率以及更低的形成能,表明这些元素的引入可有效提升β-Ga_(2)O_(3)光催化效率;Nb、Ta掺杂可显著增强材料在红外光区的吸收,Mn、Fe掺杂则显著提升材料在紫外和可见光区的吸收能力,其中,Nb在0.5 eV处光吸收系数高达1.38×10^(5)cm^(−1),Mn、Fe掺杂在3 eV处光吸收系数可达1×10^(5)cm^(−1),在不同波段均呈现出良好的光吸收能力.此外,Hg掺杂表现出跨红外至深紫外的宽波段增强效果,Hg掺杂后,电子空穴相对有效质量高达109,说明Hg掺杂显著提升载流子分离能力,同时由于其在宽波段显著增强的光吸收效果,因此,Hg可作为β-Ga_(2)O_(3)在光催化制氢中理想的金属掺杂元素,以上研究结果为β-Ga_(2)O_(3)光催化分解水制氢研究提供了价值参考.
基金supported by the National Natural Science Foundation of China(Nos.22276060 and 21976059)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012636)China Scholarship Council Scholarship(No.201906155006)。
文摘The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.