The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonizatio...The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
β-Ga_(2)O_(3)以其较高的导带底(Conduction Band Minimum,CBM)和较低的价带顶(Valence Band Maximum,VBM),赋予其光生电子和空穴较强的还原与氧化能力,但其宽禁带和高载流子复合率限制了在光催化中的应用.金属离子掺杂被认为是提升光...β-Ga_(2)O_(3)以其较高的导带底(Conduction Band Minimum,CBM)和较低的价带顶(Valence Band Maximum,VBM),赋予其光生电子和空穴较强的还原与氧化能力,但其宽禁带和高载流子复合率限制了在光催化中的应用.金属离子掺杂被认为是提升光催化性能的有效途径.本文基于第一性原理系统研究了Sr、Ba、V、Nb、Ta等二十种元素掺杂对β-Ga_(2)O_(3)光催化性能的影响,研究发现:Sr、Nb、Ta、Mn、Fe、Zn、Hg七种元素掺杂β-Ga_(2)O_(3)后,材料除能保持合适的带边位置外,还具有更高的电子空穴分离效率以及更低的形成能,表明这些元素的引入可有效提升β-Ga_(2)O_(3)光催化效率;Nb、Ta掺杂可显著增强材料在红外光区的吸收,Mn、Fe掺杂则显著提升材料在紫外和可见光区的吸收能力,其中,Nb在0.5 eV处光吸收系数高达1.38×10^(5)cm^(−1),Mn、Fe掺杂在3 eV处光吸收系数可达1×10^(5)cm^(−1),在不同波段均呈现出良好的光吸收能力.此外,Hg掺杂表现出跨红外至深紫外的宽波段增强效果,Hg掺杂后,电子空穴相对有效质量高达109,说明Hg掺杂显著提升载流子分离能力,同时由于其在宽波段显著增强的光吸收效果,因此,Hg可作为β-Ga_(2)O_(3)在光催化制氢中理想的金属掺杂元素,以上研究结果为β-Ga_(2)O_(3)光催化分解水制氢研究提供了价值参考.展开更多
Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is cons...Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is constructed by reversible metal electrodeposition(RME)of Bi/Cu on WO_(3)·xH_(2)O film electrodeposited onto fluorine-doped tin oxide(FTO)transparent conductive glass.The electrolyte consists of CuCl_(2),BiCl_(3),KCl and HCl aqueous solution,supplying necessary components for both electrochemical and electrodeposition processes.The ECD shows ability to rapidly transition between colorless and black states,which achieves a large optical modulation of 77.0%at 570 nm.In the black state,the ECD exhibits a near-zero transmittance in the wavelength range of 400-1100 nm while maintaining 96.6%of its initial optical modulation after coloration/bleaching cycling of 60000 s,exhibiting good cyclic stability.This RMED has relatively high stability under open-circuit voltage and also possesses excellent heat insulation performance.The results offer a solution to overcome the poor cyclic stability of RMEDs and improve the optical modulation of ECDs.展开更多
Developing efficient photocatalysts for CO_(2)conversion under full-spectrum irradiation remains a key challenge for solar-to-chemical energy conversion.In this study,a novel S-scheme heterojunction composed of reduct...Developing efficient photocatalysts for CO_(2)conversion under full-spectrum irradiation remains a key challenge for solar-to-chemical energy conversion.In this study,a novel S-scheme heterojunction composed of reduction Cs_(0.32)WO_(3)(CWO)nanosheets with hexagonal structure and oxidation WO_(3)·2H_(2)O(WO)nanorods with monoclinic structure photocatalyst was successfully constructed via an ultrasound strategy.Under full-spectrum irradiation for 4 h,the optimized 2D/1D of heterostructure CWO/WO-0.8 exhibited superior photocatalytic performance,achieving CO and CH_(3)OH yields of 29.74 and 63.71μmol·g^(-1),respectively.The enhanced activity is primarily ascribed to the formation of an S-scheme charge transfer pathway,which facilitates efficient separation and directional migration of photogenerated charge carriers through the internal electric field at the CWO/WO interface.This process facilitates the electron enrichment on the CWO surface and significantly enhances its CO_(2)reduction ability.Besides,the results of various characterizations show that CWO/WO-0.8 possesses enhanced optical response capability.The results of density functional theory calculations and CO_(2)-temperature programmed desorption analysis confirmed that the CWO/WO heterojunction exhibits stronger CO_(2)adsorption and activation abilities compared to the pristine CWO and WO.The reaction pathway for CH_(3)OH production was elucidated by in-situ diffused reflectance Fourier transformed infrared tests.This work provides new insights into the rational design of S-scheme photocatalysts for efficient and selective CO_(2)conversion.展开更多
Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ ...Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ hydrolysis method.The NaBH_(4) regulated the ZnVO/V-Zn(O,S)-3 with rich Vo and suitable n(V^(4+))/n(V^(5+))ratio achieved an excellent photocatalytic nitrogen fixation activity of 301.7μmol/(g×h)and apparent quantum efficiency of 1.148%at 420 nm without any sacrificial agent,which is 11 times than that of V-Zn(O,S).The Vo acts as the active site to trap and activate N_(2) molecules and to trap and activate H_(2)O to produce the H for N_(2) molecules photocatalytic reduction.The rich Vo defects can also reduce the competitive adsorption of H_(2)O and N_(2) molecules on the surface active site of the catalyst.The heterovalent vanadium states act as the photogenerated electrons,quickly hopping between V^(4+)and V^(5+)to transfer for the photocatalytic N_(2) reduction reaction.Additionally,the Z-scheme heterojunction effectively minimizes photogenerated carrier recombination.These synergistic effects collectively boost the photocatalytic nitrogen fixation activity.This study provides a practical method for designing Z-scheme heterojunctions for efficient photocatalytic N_(2) fixation under mild conditions.展开更多
The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS...The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.展开更多
The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contribu...The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contributing to addressing sustainability challenges.The S-scheme charge transfer mechanism enhances charge separation by maintaining strong redox potentials at both ends,facilitating both oxidation and reduction reactions.Herein,we synthesize a visible-light-responsive oxygen vacancy-rich In_(2)O_(3-x)/tubular carbon nitride(IO_(OV)/TCN)S-scheme heterojunction photocatalyst via electrostatic adherence for selec-tive 5-hydroxymethylfurfural(HMF)oxidation to 2,5-diformylfuran(DFF)and 2,5-furandicarboxylic acid(FDCA),alongside H_(2)production.Under anaerobic conditions and visible-light irradiation,the optimal IOOV/TCN-10 catalyst achieves an HMF conversion of 94.8%with a selectivity of 53.6%for DFF and FDCA,and a H_(2)yield of 754.05μmol g^(−1)in 3 h.The significantly improved photocatalytic activity results from enhanced visible-light absorption,reduced carrier recombination,and abundant catalytic active sites due to the synergistic effect of surface oxygen vacancies,the hollow nanotube-based architecture,and the S-scheme charge transfer mechanism.This work highlights the great potentials of S-scheme heterojunctions in biomass conversion for sustainable energy use and chemical production.展开更多
In this work,the TiO_(2)/Sb_(2)S_(3) nanorod arrays(NRAs)were synthesized through a two-stage hydrothermal route for photoelectrochemical(PEC)water splitting.The effect of annealing treatment in Ar ambience on the PEC...In this work,the TiO_(2)/Sb_(2)S_(3) nanorod arrays(NRAs)were synthesized through a two-stage hydrothermal route for photoelectrochemical(PEC)water splitting.The effect of annealing treatment in Ar ambience on the PEC activity of TiO_(2)/Sb_(2)S_(3) composite sample was investigated by electrochemical impedance analysis,including Nyquist and Mott-Schottky(M-S)plots.It was demonstrated that vacuum annealing could crystallize Sb_(2)S_(3) component and change its color from red to black,leading to an increment of photocurrent density from 1.9 A/m^(2) to 4.25 A/m^(2) at 0 V versus saturated calomel electrode(VSCE).The enhanced PEC performance was mainly attributed to the improved visible light absorption.Moreover,annealing treatment facilitated retarding the electron-hole recombination occurred at the solid/liquid interfaces.Our work might provide a novel strategy for enhancing the PEC performance of a semiconductor electrode.展开更多
Ammonia Selective Catalytic Reduction(NHs-SCR)technology has been employed to eliminate NO_(x) from diesel engine exhaust,with Cu-SSZ-13 serving as the commercial catalyst.The greenhouse gas N_(2)O is produced as a by...Ammonia Selective Catalytic Reduction(NHs-SCR)technology has been employed to eliminate NO_(x) from diesel engine exhaust,with Cu-SSZ-13 serving as the commercial catalyst.The greenhouse gas N_(2)O is produced as a byproduct when using Cu-SSZ-13 as the NH_(3)-SCR catalyst.To achieve synergistic control of pollutants and greenhouse gases in diesel engine exhaust,rational design of Cu-SSZ-13 catalysts is required.In this study,the effect of Brønsted acid sites in Cu-SSZ-13 catalysts on the formation of N_(2)O was investigated.Mild thermal treatmentwas innovatively employed to prepare Cu-SSZ-13 catalysts with different amounts of Brønsted acid sites.EPR,H_(2)-TPR,NH_(3)-TPD,NMR were utilized to determine that the Brønsted acid sites were modified while the Cu species remained unchanged.Thereby an accurate assessment of the influence of Brønsted acid sites on N_(2)O formation could be achieved.Our results showed that Cu-SSZ-13 with more Brønsted acid sites produced less N_(2)O during the NH_(3)-SCR reaction.In the low-temperature region,the presence of framework acid sites facilitates the decomposition of the NH_(4)NO_(3)assisted by NO to form N_(2)and H_(2)O,reducing the formation of N_(2)O.In the high-temperature region,the Brønsted acid sites promote the decomposition of NH_(2)NO into N_(2)and H_(2)O.Meanwhile,the N_(2)O-SCR reaction can also be promoted by Brønsted acid sites,thereby decreasing N_(2)O emissions.This study suggests that in the future design and synthesis of Cu-SSZ-13 zeolites,attention should be paid to creating more Brønsted acid sites in Cu-SSZ-13 to reduce N_(2)O emissions.展开更多
Heterogeneous oxidation of gas-phase Hg 0 by nano-Fe 2 O 3 was investigated on a fixed bed reactor, and the effects of oxygen concentration, bed temperature, water vapour concentration and particle size have been disc...Heterogeneous oxidation of gas-phase Hg 0 by nano-Fe 2 O 3 was investigated on a fixed bed reactor, and the effects of oxygen concentration, bed temperature, water vapour concentration and particle size have been discussed. The results showed that Hg 0 could be oxidized by active oxygen atom on the surface of nano-Fe 2 O 3 as well as lattice oxygen in nano-Fe 2 O 3 . Among the factors that affect Hg 0 oxidation by nano-Fe 2 O 3 , bed temperature plays an important role. More than 40% of total mercury was oxidized at 300°C, however, the test temperature at 400°C could cause sintering of nano-catalyst, which led to a lower efficiency of Hg 0 oxidation. The increase of oxygen concentration could promote mercury oxidation and led to higher Hg 0 oxidation efficiency. No obvious mercury oxidation was detected in the pure N 2 atmosphere, which indicates that oxygen is required in the gas stream for mercury oxidation. The presence of water vapour showed different effects on mercury oxidation depending on its concentration. The lower content of water vapour could promote mercury oxidation, while the higher content of water vapour inhibits mercury oxidation.展开更多
We first present preparation of MnOx–CeO_2–Al_2O_3 catalysts with varying Mn contents through a self-propagating high-temperature synthesis(SHS) method, and studied the application of these catalysts to the selectiv...We first present preparation of MnOx–CeO_2–Al_2O_3 catalysts with varying Mn contents through a self-propagating high-temperature synthesis(SHS) method, and studied the application of these catalysts to the selective catalytic reduction of NOxwith NH3(NH_3-SCR).Using the catalyst with 18 wt.% Mn(18 MnCe1Al2), 100% NO conversion was achieved at 200°C and a gas hourly space velocity of 15384 hr-1, and the high-efficiency SCR temperature window, where NO conversion is greater than 90%, was widened to a temperature range of 150–300°C. 18 MnCe1Al2 showed great resistance to SO_2(100 ppm)and H_2O(5%) at 200°C. The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller(BET) analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and H_2 temperature programmed reduction. The characterization results showed that the surface atomic concentration of Mn increased with increasing Mn content, which led to synergism between Mn and Ce and improved the activity in the SCR reaction. 18 MnCe1Al2 has an extensive pore structure,with a BET surface area of approximately 135.4 m^2/g, a pore volume of approximately 0.16 cm^3/g, and an average pore diameter of approximately 4.6 nm. The SCR reaction on 18 MnCe1Al2 mainly followed the Eley-Rideal mechanism. The performances of the MnOx–CeO_2–Al_2O_3 catalysts were good, and because of the simplicity of the preparation process,the SHS method is applicable to their industrial-scale manufacture.展开更多
Halide vapor phase epitaxy(HVPE) is widely used in the semiconductor industry for the growth of Si, GaAs, GaN, etc.HVPE is a non-organic chemical vapor deposition(CVD) technique, characterized by high quality growth o...Halide vapor phase epitaxy(HVPE) is widely used in the semiconductor industry for the growth of Si, GaAs, GaN, etc.HVPE is a non-organic chemical vapor deposition(CVD) technique, characterized by high quality growth of epitaxial layers with fast growth rate, which is versatile for the fabrication of both substrates and devices with wide applications. In this paper, we review the usage of HVPE for the growth and device applications of Ga_2O_3, with detailed discussions on a variety of technological aspects of HVPE. It is concluded that HVPE is a promising candidate for the epitaxy of large-area Ga_2O_3 substrates and for the fabrication of high power β-Ga_2O_3 devices.展开更多
Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, ...Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22276060 and 21976059)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012636)China Scholarship Council Scholarship(No.201906155006)。
文摘The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
文摘β-Ga_(2)O_(3)以其较高的导带底(Conduction Band Minimum,CBM)和较低的价带顶(Valence Band Maximum,VBM),赋予其光生电子和空穴较强的还原与氧化能力,但其宽禁带和高载流子复合率限制了在光催化中的应用.金属离子掺杂被认为是提升光催化性能的有效途径.本文基于第一性原理系统研究了Sr、Ba、V、Nb、Ta等二十种元素掺杂对β-Ga_(2)O_(3)光催化性能的影响,研究发现:Sr、Nb、Ta、Mn、Fe、Zn、Hg七种元素掺杂β-Ga_(2)O_(3)后,材料除能保持合适的带边位置外,还具有更高的电子空穴分离效率以及更低的形成能,表明这些元素的引入可有效提升β-Ga_(2)O_(3)光催化效率;Nb、Ta掺杂可显著增强材料在红外光区的吸收,Mn、Fe掺杂则显著提升材料在紫外和可见光区的吸收能力,其中,Nb在0.5 eV处光吸收系数高达1.38×10^(5)cm^(−1),Mn、Fe掺杂在3 eV处光吸收系数可达1×10^(5)cm^(−1),在不同波段均呈现出良好的光吸收能力.此外,Hg掺杂表现出跨红外至深紫外的宽波段增强效果,Hg掺杂后,电子空穴相对有效质量高达109,说明Hg掺杂显著提升载流子分离能力,同时由于其在宽波段显著增强的光吸收效果,因此,Hg可作为β-Ga_(2)O_(3)在光催化制氢中理想的金属掺杂元素,以上研究结果为β-Ga_(2)O_(3)光催化分解水制氢研究提供了价值参考.
文摘Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is constructed by reversible metal electrodeposition(RME)of Bi/Cu on WO_(3)·xH_(2)O film electrodeposited onto fluorine-doped tin oxide(FTO)transparent conductive glass.The electrolyte consists of CuCl_(2),BiCl_(3),KCl and HCl aqueous solution,supplying necessary components for both electrochemical and electrodeposition processes.The ECD shows ability to rapidly transition between colorless and black states,which achieves a large optical modulation of 77.0%at 570 nm.In the black state,the ECD exhibits a near-zero transmittance in the wavelength range of 400-1100 nm while maintaining 96.6%of its initial optical modulation after coloration/bleaching cycling of 60000 s,exhibiting good cyclic stability.This RMED has relatively high stability under open-circuit voltage and also possesses excellent heat insulation performance.The results offer a solution to overcome the poor cyclic stability of RMEDs and improve the optical modulation of ECDs.
文摘Developing efficient photocatalysts for CO_(2)conversion under full-spectrum irradiation remains a key challenge for solar-to-chemical energy conversion.In this study,a novel S-scheme heterojunction composed of reduction Cs_(0.32)WO_(3)(CWO)nanosheets with hexagonal structure and oxidation WO_(3)·2H_(2)O(WO)nanorods with monoclinic structure photocatalyst was successfully constructed via an ultrasound strategy.Under full-spectrum irradiation for 4 h,the optimized 2D/1D of heterostructure CWO/WO-0.8 exhibited superior photocatalytic performance,achieving CO and CH_(3)OH yields of 29.74 and 63.71μmol·g^(-1),respectively.The enhanced activity is primarily ascribed to the formation of an S-scheme charge transfer pathway,which facilitates efficient separation and directional migration of photogenerated charge carriers through the internal electric field at the CWO/WO interface.This process facilitates the electron enrichment on the CWO surface and significantly enhances its CO_(2)reduction ability.Besides,the results of various characterizations show that CWO/WO-0.8 possesses enhanced optical response capability.The results of density functional theory calculations and CO_(2)-temperature programmed desorption analysis confirmed that the CWO/WO heterojunction exhibits stronger CO_(2)adsorption and activation abilities compared to the pristine CWO and WO.The reaction pathway for CH_(3)OH production was elucidated by in-situ diffused reflectance Fourier transformed infrared tests.This work provides new insights into the rational design of S-scheme photocatalysts for efficient and selective CO_(2)conversion.
文摘Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ hydrolysis method.The NaBH_(4) regulated the ZnVO/V-Zn(O,S)-3 with rich Vo and suitable n(V^(4+))/n(V^(5+))ratio achieved an excellent photocatalytic nitrogen fixation activity of 301.7μmol/(g×h)and apparent quantum efficiency of 1.148%at 420 nm without any sacrificial agent,which is 11 times than that of V-Zn(O,S).The Vo acts as the active site to trap and activate N_(2) molecules and to trap and activate H_(2)O to produce the H for N_(2) molecules photocatalytic reduction.The rich Vo defects can also reduce the competitive adsorption of H_(2)O and N_(2) molecules on the surface active site of the catalyst.The heterovalent vanadium states act as the photogenerated electrons,quickly hopping between V^(4+)and V^(5+)to transfer for the photocatalytic N_(2) reduction reaction.Additionally,the Z-scheme heterojunction effectively minimizes photogenerated carrier recombination.These synergistic effects collectively boost the photocatalytic nitrogen fixation activity.This study provides a practical method for designing Z-scheme heterojunctions for efficient photocatalytic N_(2) fixation under mild conditions.
文摘The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.
基金financially supported by the Natural Science Foundation of China(Nos.21972058,22102064,and 22302080)Anhui Key Laboratory of Nanomaterials and Nanotechnology,the Major Science and Technology Projects in Anhui Province(No.202305a12020006).
文摘The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contributing to addressing sustainability challenges.The S-scheme charge transfer mechanism enhances charge separation by maintaining strong redox potentials at both ends,facilitating both oxidation and reduction reactions.Herein,we synthesize a visible-light-responsive oxygen vacancy-rich In_(2)O_(3-x)/tubular carbon nitride(IO_(OV)/TCN)S-scheme heterojunction photocatalyst via electrostatic adherence for selec-tive 5-hydroxymethylfurfural(HMF)oxidation to 2,5-diformylfuran(DFF)and 2,5-furandicarboxylic acid(FDCA),alongside H_(2)production.Under anaerobic conditions and visible-light irradiation,the optimal IOOV/TCN-10 catalyst achieves an HMF conversion of 94.8%with a selectivity of 53.6%for DFF and FDCA,and a H_(2)yield of 754.05μmol g^(−1)in 3 h.The significantly improved photocatalytic activity results from enhanced visible-light absorption,reduced carrier recombination,and abundant catalytic active sites due to the synergistic effect of surface oxygen vacancies,the hollow nanotube-based architecture,and the S-scheme charge transfer mechanism.This work highlights the great potentials of S-scheme heterojunctions in biomass conversion for sustainable energy use and chemical production.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019ZDPY04).
文摘In this work,the TiO_(2)/Sb_(2)S_(3) nanorod arrays(NRAs)were synthesized through a two-stage hydrothermal route for photoelectrochemical(PEC)water splitting.The effect of annealing treatment in Ar ambience on the PEC activity of TiO_(2)/Sb_(2)S_(3) composite sample was investigated by electrochemical impedance analysis,including Nyquist and Mott-Schottky(M-S)plots.It was demonstrated that vacuum annealing could crystallize Sb_(2)S_(3) component and change its color from red to black,leading to an increment of photocurrent density from 1.9 A/m^(2) to 4.25 A/m^(2) at 0 V versus saturated calomel electrode(VSCE).The enhanced PEC performance was mainly attributed to the improved visible light absorption.Moreover,annealing treatment facilitated retarding the electron-hole recombination occurred at the solid/liquid interfaces.Our work might provide a novel strategy for enhancing the PEC performance of a semiconductor electrode.
基金supported by the National Key R&D Program of China(Nos.2023YFC3707200 and 2022YFC3704400)the National Natural Science Foundation of China(Nos.52200136,22402220,and 52225004)Hangzhou Qianjiang Distinguished Experts Project.
文摘Ammonia Selective Catalytic Reduction(NHs-SCR)technology has been employed to eliminate NO_(x) from diesel engine exhaust,with Cu-SSZ-13 serving as the commercial catalyst.The greenhouse gas N_(2)O is produced as a byproduct when using Cu-SSZ-13 as the NH_(3)-SCR catalyst.To achieve synergistic control of pollutants and greenhouse gases in diesel engine exhaust,rational design of Cu-SSZ-13 catalysts is required.In this study,the effect of Brønsted acid sites in Cu-SSZ-13 catalysts on the formation of N_(2)O was investigated.Mild thermal treatmentwas innovatively employed to prepare Cu-SSZ-13 catalysts with different amounts of Brønsted acid sites.EPR,H_(2)-TPR,NH_(3)-TPD,NMR were utilized to determine that the Brønsted acid sites were modified while the Cu species remained unchanged.Thereby an accurate assessment of the influence of Brønsted acid sites on N_(2)O formation could be achieved.Our results showed that Cu-SSZ-13 with more Brønsted acid sites produced less N_(2)O during the NH_(3)-SCR reaction.In the low-temperature region,the presence of framework acid sites facilitates the decomposition of the NH_(4)NO_(3)assisted by NO to form N_(2)and H_(2)O,reducing the formation of N_(2)O.In the high-temperature region,the Brønsted acid sites promote the decomposition of NH_(2)NO into N_(2)and H_(2)O.Meanwhile,the N_(2)O-SCR reaction can also be promoted by Brønsted acid sites,thereby decreasing N_(2)O emissions.This study suggests that in the future design and synthesis of Cu-SSZ-13 zeolites,attention should be paid to creating more Brønsted acid sites in Cu-SSZ-13 to reduce N_(2)O emissions.
基金supported by the Scientific Funds for Outstanding Young Scientists of China(No.50525619)the National Natural Science Foundation of China(No.51078163,50706014)the National High Technology Research and Development Program(863)of China(No.2006AA05Z304)
文摘Heterogeneous oxidation of gas-phase Hg 0 by nano-Fe 2 O 3 was investigated on a fixed bed reactor, and the effects of oxygen concentration, bed temperature, water vapour concentration and particle size have been discussed. The results showed that Hg 0 could be oxidized by active oxygen atom on the surface of nano-Fe 2 O 3 as well as lattice oxygen in nano-Fe 2 O 3 . Among the factors that affect Hg 0 oxidation by nano-Fe 2 O 3 , bed temperature plays an important role. More than 40% of total mercury was oxidized at 300°C, however, the test temperature at 400°C could cause sintering of nano-catalyst, which led to a lower efficiency of Hg 0 oxidation. The increase of oxygen concentration could promote mercury oxidation and led to higher Hg 0 oxidation efficiency. No obvious mercury oxidation was detected in the pure N 2 atmosphere, which indicates that oxygen is required in the gas stream for mercury oxidation. The presence of water vapour showed different effects on mercury oxidation depending on its concentration. The lower content of water vapour could promote mercury oxidation, while the higher content of water vapour inhibits mercury oxidation.
基金supported by the National High Technology Research and Development Program of China (863 program) (No.2015AA03A401)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_15R46)the program of Science and Technology Innovation Team in Bingtuan (No.2015BD003)
文摘We first present preparation of MnOx–CeO_2–Al_2O_3 catalysts with varying Mn contents through a self-propagating high-temperature synthesis(SHS) method, and studied the application of these catalysts to the selective catalytic reduction of NOxwith NH3(NH_3-SCR).Using the catalyst with 18 wt.% Mn(18 MnCe1Al2), 100% NO conversion was achieved at 200°C and a gas hourly space velocity of 15384 hr-1, and the high-efficiency SCR temperature window, where NO conversion is greater than 90%, was widened to a temperature range of 150–300°C. 18 MnCe1Al2 showed great resistance to SO_2(100 ppm)and H_2O(5%) at 200°C. The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller(BET) analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and H_2 temperature programmed reduction. The characterization results showed that the surface atomic concentration of Mn increased with increasing Mn content, which led to synergism between Mn and Ce and improved the activity in the SCR reaction. 18 MnCe1Al2 has an extensive pore structure,with a BET surface area of approximately 135.4 m^2/g, a pore volume of approximately 0.16 cm^3/g, and an average pore diameter of approximately 4.6 nm. The SCR reaction on 18 MnCe1Al2 mainly followed the Eley-Rideal mechanism. The performances of the MnOx–CeO_2–Al_2O_3 catalysts were good, and because of the simplicity of the preparation process,the SHS method is applicable to their industrial-scale manufacture.
基金supported by the National Key R&D Program of China(No.2017YFB0404201)the Solid State Lighting and Energy-Saving Electronics Collaborative Innovation Center,PAPD,and the State Grid Shandong Electric Power Company
文摘Halide vapor phase epitaxy(HVPE) is widely used in the semiconductor industry for the growth of Si, GaAs, GaN, etc.HVPE is a non-organic chemical vapor deposition(CVD) technique, characterized by high quality growth of epitaxial layers with fast growth rate, which is versatile for the fabrication of both substrates and devices with wide applications. In this paper, we review the usage of HVPE for the growth and device applications of Ga_2O_3, with detailed discussions on a variety of technological aspects of HVPE. It is concluded that HVPE is a promising candidate for the epitaxy of large-area Ga_2O_3 substrates and for the fabrication of high power β-Ga_2O_3 devices.
文摘Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.