Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly im...Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly improved optoelectronic performance.In this work,we studied the effect of introducing halogen precursors on the structure of classical PbS nanocrystals(NCs)during the synthesis process and realized the preparation of PbS/Pb_(3)S_(2)X_(2) core/shell structure for the first time.The core/shell structure can effectively improve their optical properties.Furthermore,our approach enables the synthesis of Pb_(3)S_(2)Br_(2) that had not yet been reported.Our results not only provide valuable insights into the heterogeneous integration of PbYX and PbY materials to elevate material properties but also provide an effective method for further expanding the preparation of PbYX material systems.展开更多
Long-wave infrared(LWIR)micro-metalens arrays have emerged as highly flexible and multifunctional optical elements,significantly enhancing the performance of infrared imaging systems.In this work,two types of chalcoge...Long-wave infrared(LWIR)micro-metalens arrays have emerged as highly flexible and multifunctional optical elements,significantly enhancing the performance of infrared imaging systems.In this work,two types of chalcogenide glass based LWIR micro-metalens arrays with 10×10 array-size and 100%fill factor were designed and investigated.Specifically,the first one possesses a uniform focal length of 110μm,and it can efficiently focus the incident light(9.78μm)into a spot with a full width at half maximum(FWHM)of approximately 11.5μm(~1.18λ).Additionally,the second one features flexible and configurable focal lengths of the respective micro-metalenses in the array,and focal lengths of102μm,149μm,and 182μm can be achieved on one substrate,while it still retains the same optical performance as the micro-metalens array with a single focal length.Overall,these all-chalcogenide glass based LWIR micro-metasurface arrays possess significant potential for integrating within advanced infrared imaging systems in the future.展开更多
The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the m...The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
Recently,non-centrosymmetric(NCS)Hg-based chalcogenides have garnered significant interest due to their strong second-harmonic-generation intensities(deff),making them attractive candidates for infrared nonlinear opti...Recently,non-centrosymmetric(NCS)Hg-based chalcogenides have garnered significant interest due to their strong second-harmonic-generation intensities(deff),making them attractive candidates for infrared nonlinear optical(IR-NLO)application.However,achieving both wide band gaps(Eg)and large phasematched deffsimultaneously in these materials remains a challenge due to their inherent constraints on each other.In this research,we have successfully obtained two quaternary NCS Hg-based chalcogenides,Rb2HgGe_(3)S_(8)and Cs_(2)HgGe_(3)S_(8),by implementing a bandgap engineering strategy that involves alkali metal introduction and Hg/Ge ratio regulation.Both compounds consist of 2D[Hg Ge_(3)S_(8)]_(2)–anionic layers made of 1D[HgGeS_(6)]^(6–)chains and dimeric[Ge_(2)S_(6)]_(4–)polyhedra arranged alternately,and the charge-balanced Rb+/Cs+cations located between these layers.Remarkably,Rb_(2)HgGe_(3)S_(8)and Cs_(2)HgGe_(3)S_(8)exhibit overall properties required for promising IR-NLO materials,including sufficient PM deff(0.55–0.70×AgGaS_(2)@20_(5)0 nm),large Eg(3.27–3.41 e V),giant laser-induced damage thresholds(17.4–19.7×AgGaS_(2)@1064 nm),broad optical transmission intervals(0.32–17.5μm),and suitable theoretical birefringence(0.069–0.086@2050 nm).Furthermore,in-depth theoretical analysis reveals that the exceptional IRNLO performance is attributed to the synergy effects of distorted[HgS_(4)]and[GeS_(4)]tetrahedra.Our study provides a useful strategy for enhancing the Eg and advancing Hg-based IR-NLO materials,which is expected to extended and implemented in other chalcogenide systems.展开更多
Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning hig...Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning high-aspect-ratio microstructures on the surface of chalcogenide glasses offers an efficient and robust method to manipulate longwave infrared radiations.Despite chalcogenide glass being considered soft in terms of its mechanical properties,we successfully fabricate high-aspect-ratio micropillars with a height of 8μm using optimized deep etching process,and we demonstrate a 2-mm-diameter all-chalcogenide metalens with a numerical aperture of 0.45 on the surface of a 1.5-mm-thick As2Se3 glass.Leveraging the exceptional longwave infrared(LWIR)transparency and moderate refractive index of As2Se3 glass,the all-chalcogenide metalens produces a focal spot size of~1.39λ0 with a focusing efficiency of 47%at the wavelength of 9.78μm,while also exhibiting high-resolution imaging capabilities.Our work provides a promising route to realize easy-to-fabricate,mass-producible planar infrared optics for compact,light-weight LWIR imaging systems.展开更多
The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to r...The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research.展开更多
Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimen...Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing.展开更多
Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox...Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox kinetics intrinsic to sulfur and the pronounced shuttle effect induced by lithium polysulfides(Li PSs),which seriously affecting the energy density,cycling life and rate capacity.The conceptualization and implementation of catalytic materials stand acknowledged as a propitious stratagem for orchestrating kinetic modulation,particularly in excavating the conversion of LiPSs and has evolved into a focal point for disposing.Among them,chalcogenide catalytic materials(CCMs)have shown satisfactory catalytic effects ascribe to the unique physicochemical properties,and have been extensively developed in recent years.Considering the lack of systematic summary regarding the development of CCMs and corresponding performance optimization strategies,herein,we initiate a comprehensive review regarding the recent progress of CCMs for effective collaborative immobilization and accelerated transformation kinetics of Li PSs.Following that,the modulation strategies to improve the catalytic activity of CCMs are summarized,including structural engineering(morphology engineering,surface/interface engineering,crystal engineering)and electronic engineering(doping and vacancy,etc.).Finally,the application prospect of CCMs in LSBs is clarified,and some enlightenment is provided for the reasonable design of CCMs serving practical LSBs.展开更多
Perovskites dominate the photovoltaic research community over the last two decades due to its very high absorption coefficient,electron and hole mobility.However,most of the reported solar cells constitute organic per...Perovskites dominate the photovoltaic research community over the last two decades due to its very high absorption coefficient,electron and hole mobility.However,most of the reported solar cells constitute organic perovskites which offer very high efficiency but are highly unstable.Chalcogenide perovskites like BaZrS_(3),CaZrS_(3),etc.promise to be a perfect alternate owing to its high stability and mobilities.But,till now no stable photovoltaic device has been successfully fabricated using these materials and the existing challenges present in the synthesis of such perovskites are discussed.Also,the basic thermodynamic aspects that are essential for formation of BaZrS_(3)are discussed.An extensive review on the precedent literatures and the future direction in the BaZrS_(3)photovoltaic device research is clearly given.展开更多
Non-layered two-dimensional(2D)materials have sparked much interest recently due to their atomic thickness,large surface area,thickness-and facet-dependent properties.Currently,these materials are mainly grown from we...Non-layered two-dimensional(2D)materials have sparked much interest recently due to their atomic thickness,large surface area,thickness-and facet-dependent properties.Currently,these materials are mainly grown from wet-chemistry methods but suffer from small size,low quality,and multi-facets,which is a major challenge hindering their facet-dependent property studies and applications.Here,we report the facet-engineered growth(FEG)of non-layered 2D manganese chalcogenides(MnX,X=S,Se,Te)based on the chemical vapor deposition method.The as-grown samples exhibit large-area surfaces of single facet,high-crystallinity,and ordered domain orientation.As a proof-of-concept,we show the facet-dependent electrocatalytic property of non-layered 2D MnSe,proving they are ideal candidates for fundamental research.Furthermore,we elucidate the underlying mechanism of FEG during the vapor growth process by the interfacial energy derived nucleation models.The method developed in this work provides new opportunities for regulating and designing the structure of 2D materials.展开更多
Dynamically tunable metasurfaces employing chalcogenide phase-change materials(PCMs)such as Ge_(2)Sb_(2)Te_(5)alloys have garnered significant attention and research efforts.However,the utilization of chalcogenide PCM...Dynamically tunable metasurfaces employing chalcogenide phase-change materials(PCMs)such as Ge_(2)Sb_(2)Te_(5)alloys have garnered significant attention and research efforts.However,the utilization of chalcogenide PCMs in dynamic metasurface devices necessitates protection,owing to their susceptibility to volatilization and oxidation.Conventional protective layer materials such as Al_(2)O_(3),TiO_(2),and SiO_(2)present potential drawbacks including diffusion,oxidation,or thermal expansion coefficient mismatch with chalcogenide PCMs during high-temperature phase transition,severely limiting the durability of chalcogenide PCM-based devices.In this paper,we propose,for the first time to our knowledge,the utilization of chalcogenide glass characterized by high thermal stability as a protective material for chalcogenide PCM.This approach addresses the durability challenge of current dynamic photonic devices based on chalcogenide PCM by virtue of their closely matched optical and thermal properties.Building upon this innovation,we introduce an all-chalcogenide dynamic tunable metasurface filter and comprehensively simulate and analyze its characteristics.This pioneering work paves the way for the design and practical implementation of optically dynamically tunable metasurface devices leveraging chalcogenide PCMs,ushering in new opportunities in the field.展开更多
Lithium-ion batteries(LIBs)gradually occupied the energy storage market due to their long cycling life;high working voltage;as well as energy density.However;LIBs have high costs due to the limited lithium resource an...Lithium-ion batteries(LIBs)gradually occupied the energy storage market due to their long cycling life;high working voltage;as well as energy density.However;LIBs have high costs due to the limited lithium resource and difficulty to exploit.Potassium ion batteries(PIBs)have aroused extensive attention over the past few years since they possess considerable potassium salt resources while exhibiting similar electrochemical properties to LIBs.The electrode material takes on great significance in determining the properties exhibited by the batteries.Zinc-based chalcogenides have served as the most suitable anode materials for their numerous raw material resources;low prices;and environmental friendliness.Nevertheless;the application of Zinc-based chalcogenides has been continuously hindered by sluggish diffusion kinetics;low electrical conductivity;as well as huge volume vari-ation.Several effective strategies have been explored to settle the above matters(e.g.;designing nanostructures;constructing carbon composite structures;as well as doping anions or cations to construct heterojunction).In this review;the recent advance of zinc-based chalcogenides(e.g.;electrochemical mechanisms;challenges;and perspectives)are summarized.This review can provide novel insights into the development of transition metal chalcogenides for PIBs.展开更多
Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,b...Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,blood oxygen saturation,breath markers,etc.)and ambient signals(such as ultraviolet radiation,inflammable and explosive,toxic and harmful gases),thus providing new opportunities for human activity monitoring and personal telemedicine care.Here we focus on photodetectors and gas sensors built from metal chalcogenide,which have made great progress in recent years.Firstly,we present an overview of healthcare applications based on photodetectors and gas sensors,and discuss the requirement associated with these applications in detail.We then discuss advantages and properties of solution-processable metal chalcogenides,followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides.Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare.展开更多
Intense efforts have been devoted to the synthesis of heterogeneous nanocomposites consisting of chalcogenide semiconductors and noble metals,which usually exhibit enhanced properties owing to the synergistic effect b...Intense efforts have been devoted to the synthesis of heterogeneous nanocomposites consisting of chalcogenide semiconductors and noble metals,which usually exhibit enhanced properties owing to the synergistic effect between their different material domains.Tailoring the structure of the metal domains in the nanocomposites may lead to further improvements of its performance for a given application.This review therefore highlights the strategies based on a structural conversion process for the fabrication of nanocomposites consisting of chalcogenide semiconductors and noble metals with various internal structures,e.g.,hollow or cage-bell.This strategy relies on a unique inside-out diffusion phenomenon of Ag in core-shell nanoparticles with Ag residing at core or inner shell region.In the presence of sulfur or selenium precursors,the diffused Ag are converted into Ag2S or Ag2Se,which is connected with the remaining noble metal parts,forming nanocomposites consisting of silver chalcogenide and noble metal nanoparticles with hollow or cage-bell structures.We would focus on the introduction of the fundamentals,principles,electrocatalytic applications as well as perspectives of the chalcogenide semiconductor-noble metal nanocomposites derived from their core-shell precursors so as to provide the readers insights in designing efficient nanocomposites for electrocatalysis.展开更多
Dy^3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm dio...Dy^3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 nm, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy^3+ ions. The longest lifetime was over 2.5 ms, and the value was significantly higher than that in other Dy^3+-doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy^3+-doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.展开更多
Developing high-performance noble metal-free and free-standing catalytic electrodes are crucial for overall water splitting. Here, nickel sulfide(NiS) and nickel selenide(Ni Se) are synthesized on nickel foam(NF...Developing high-performance noble metal-free and free-standing catalytic electrodes are crucial for overall water splitting. Here, nickel sulfide(NiS) and nickel selenide(Ni Se) are synthesized on nickel foam(NF) with a one-pot solvothermal method and directly used as free-standing electrodes for efficiently catalyzing hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline solution.In virtue of abundant active sites, the NiS/NF and the NiS e/NF electrodes can deliver a current density of 10 m A cmat only 123 m V, 137 m V for HER and 222 m V, 271 m V for OER. Both of the hierarchical NiS/NF and Ni Se/NF electrodes can serve as anodes and cathodes in electrocatalytic overall watersplitting and can achieve a current density of 10 m A cmwith an applied voltage of.59 V and 1.69 V,respectively. The performance of as-obtained NiS/NF||NiS/NF is even close to that of the noble metalbased Pt/C/NF||IrO/NF system.展开更多
This paper reviews the recent progress in the synthesis of near-infrared(NIR) lead chalcogenide(PbX;PbX = PbS,PbSe, PbTe) quantum dots(QDs) and their applications in NIR QDs based light emitting diodes(NIR-QLEDs). It ...This paper reviews the recent progress in the synthesis of near-infrared(NIR) lead chalcogenide(PbX;PbX = PbS,PbSe, PbTe) quantum dots(QDs) and their applications in NIR QDs based light emitting diodes(NIR-QLEDs). It summarizes the strategies of how to synthesize high efficiency PbX QDs and how to realize high performance Pb X based NIR-QLEDs.展开更多
Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synapti...Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.展开更多
A numerical model was developed to study the time dynamics of photo luminescence emitted by Tb^3+doped multimode chalcogenide-selenide glass fibers pumped by laser light at approximately 2μm.The model consists of a s...A numerical model was developed to study the time dynamics of photo luminescence emitted by Tb^3+doped multimode chalcogenide-selenide glass fibers pumped by laser light at approximately 2μm.The model consists of a set of partial differential equations(PDEs),which describe the temporal and spatial evolution of the photon density and level populations within the fiber.In order to solve numerically the PDEs a method of lines was applied.The modeling parameters were extracted from measurements and from data available in the literature.The numerical results obtained support experimental observations.In particular,the developed model reproduces the discrepancies that are observed between the photoluminescence decay curves obtained from different points along the fiber.The numerical analysis was also used to explain the source of these discrepancies.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0110300)the National Natural Science Foundation of China(Grant Nos.52372215,92163114,and 52202274)+5 种基金the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20230504)the Special Fund for the"Dual Carbon"Science and Technology Innovation of Jiangsu province(Industrial Prospect and Key Technology Research program)(Grant Nos.BE2022023 and BE2022021)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.21KJA430004)Gusu Innovation and Entre preneurship Leading Talent Program(Grant No.ZXL2022451)the China Postdoctoral Science Foundation(Grant No.2023M732523)supported by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project.
文摘Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly improved optoelectronic performance.In this work,we studied the effect of introducing halogen precursors on the structure of classical PbS nanocrystals(NCs)during the synthesis process and realized the preparation of PbS/Pb_(3)S_(2)X_(2) core/shell structure for the first time.The core/shell structure can effectively improve their optical properties.Furthermore,our approach enables the synthesis of Pb_(3)S_(2)Br_(2) that had not yet been reported.Our results not only provide valuable insights into the heterogeneous integration of PbYX and PbY materials to elevate material properties but also provide an effective method for further expanding the preparation of PbYX material systems.
基金Project supported by the Natural Science Foundation of Zhejiang Province(Grant Nos.LDT23F05015F05 and LDT23F05011F05)the Joint Funds of the National Natural Science Foundation of China(Grant No.U24A20313)。
文摘Long-wave infrared(LWIR)micro-metalens arrays have emerged as highly flexible and multifunctional optical elements,significantly enhancing the performance of infrared imaging systems.In this work,two types of chalcogenide glass based LWIR micro-metalens arrays with 10×10 array-size and 100%fill factor were designed and investigated.Specifically,the first one possesses a uniform focal length of 110μm,and it can efficiently focus the incident light(9.78μm)into a spot with a full width at half maximum(FWHM)of approximately 11.5μm(~1.18λ).Additionally,the second one features flexible and configurable focal lengths of the respective micro-metalenses in the array,and focal lengths of102μm,149μm,and 182μm can be achieved on one substrate,while it still retains the same optical performance as the micro-metalens array with a single focal length.Overall,these all-chalcogenide glass based LWIR micro-metasurface arrays possess significant potential for integrating within advanced infrared imaging systems in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105272 and 62305304)the Natural Science Foundation of Fujian Province,China(Grant Nos.2022J06016 and 2021J05016)+2 种基金the National Key Research and Development Program of China(Grant No.2021ZD0109904)the Key Research Project of Zhejiang Laboratory(Grant No.2022PH0AC03)the Fundamental Research Funds for the Central Universities(Grant No.20720220109).
文摘The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金supported by the National Natural Science Foundation of China(Nos.22175175 and 22193043)Natural Science Foundation of Fujian Province(Nos.2022L3092 and 2023H0041)+1 种基金Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR118)the Youth Innovation Promotion Association CAS(No.2022303)。
文摘Recently,non-centrosymmetric(NCS)Hg-based chalcogenides have garnered significant interest due to their strong second-harmonic-generation intensities(deff),making them attractive candidates for infrared nonlinear optical(IR-NLO)application.However,achieving both wide band gaps(Eg)and large phasematched deffsimultaneously in these materials remains a challenge due to their inherent constraints on each other.In this research,we have successfully obtained two quaternary NCS Hg-based chalcogenides,Rb2HgGe_(3)S_(8)and Cs_(2)HgGe_(3)S_(8),by implementing a bandgap engineering strategy that involves alkali metal introduction and Hg/Ge ratio regulation.Both compounds consist of 2D[Hg Ge_(3)S_(8)]_(2)–anionic layers made of 1D[HgGeS_(6)]^(6–)chains and dimeric[Ge_(2)S_(6)]_(4–)polyhedra arranged alternately,and the charge-balanced Rb+/Cs+cations located between these layers.Remarkably,Rb_(2)HgGe_(3)S_(8)and Cs_(2)HgGe_(3)S_(8)exhibit overall properties required for promising IR-NLO materials,including sufficient PM deff(0.55–0.70×AgGaS_(2)@20_(5)0 nm),large Eg(3.27–3.41 e V),giant laser-induced damage thresholds(17.4–19.7×AgGaS_(2)@1064 nm),broad optical transmission intervals(0.32–17.5μm),and suitable theoretical birefringence(0.069–0.086@2050 nm).Furthermore,in-depth theoretical analysis reveals that the exceptional IRNLO performance is attributed to the synergy effects of distorted[HgS_(4)]and[GeS_(4)]tetrahedra.Our study provides a useful strategy for enhancing the Eg and advancing Hg-based IR-NLO materials,which is expected to extended and implemented in other chalcogenide systems.
基金supported by National Natural Science Foundation of China(Grant No.62105172)Natural Science Foundation of Zhejiang Province(Grant No.LDT23F05015F05,LDT23F05011F05).
文摘Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning high-aspect-ratio microstructures on the surface of chalcogenide glasses offers an efficient and robust method to manipulate longwave infrared radiations.Despite chalcogenide glass being considered soft in terms of its mechanical properties,we successfully fabricate high-aspect-ratio micropillars with a height of 8μm using optimized deep etching process,and we demonstrate a 2-mm-diameter all-chalcogenide metalens with a numerical aperture of 0.45 on the surface of a 1.5-mm-thick As2Se3 glass.Leveraging the exceptional longwave infrared(LWIR)transparency and moderate refractive index of As2Se3 glass,the all-chalcogenide metalens produces a focal spot size of~1.39λ0 with a focusing efficiency of 47%at the wavelength of 9.78μm,while also exhibiting high-resolution imaging capabilities.Our work provides a promising route to realize easy-to-fabricate,mass-producible planar infrared optics for compact,light-weight LWIR imaging systems.
文摘The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research.
基金M.Zhu acknowledges support by the National Outstanding Youth Program(62322411)the Hundred Talents Program(Chinese Academy of Sciences)+1 种基金the Shanghai Rising-Star Program(21QA1410800)The financial support was provided by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB44010200).
文摘Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing.
基金financially supported by the National Natural Science Foundation of China(No.U21A2077)the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2021ZD05)the China Postdoctoral Science Foundation(Nos.2023TQ0192,2023M742065)。
文摘Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox kinetics intrinsic to sulfur and the pronounced shuttle effect induced by lithium polysulfides(Li PSs),which seriously affecting the energy density,cycling life and rate capacity.The conceptualization and implementation of catalytic materials stand acknowledged as a propitious stratagem for orchestrating kinetic modulation,particularly in excavating the conversion of LiPSs and has evolved into a focal point for disposing.Among them,chalcogenide catalytic materials(CCMs)have shown satisfactory catalytic effects ascribe to the unique physicochemical properties,and have been extensively developed in recent years.Considering the lack of systematic summary regarding the development of CCMs and corresponding performance optimization strategies,herein,we initiate a comprehensive review regarding the recent progress of CCMs for effective collaborative immobilization and accelerated transformation kinetics of Li PSs.Following that,the modulation strategies to improve the catalytic activity of CCMs are summarized,including structural engineering(morphology engineering,surface/interface engineering,crystal engineering)and electronic engineering(doping and vacancy,etc.).Finally,the application prospect of CCMs in LSBs is clarified,and some enlightenment is provided for the reasonable design of CCMs serving practical LSBs.
文摘Perovskites dominate the photovoltaic research community over the last two decades due to its very high absorption coefficient,electron and hole mobility.However,most of the reported solar cells constitute organic perovskites which offer very high efficiency but are highly unstable.Chalcogenide perovskites like BaZrS_(3),CaZrS_(3),etc.promise to be a perfect alternate owing to its high stability and mobilities.But,till now no stable photovoltaic device has been successfully fabricated using these materials and the existing challenges present in the synthesis of such perovskites are discussed.Also,the basic thermodynamic aspects that are essential for formation of BaZrS_(3)are discussed.An extensive review on the precedent literatures and the future direction in the BaZrS_(3)photovoltaic device research is clearly given.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(52125309)the National Natural Science Foundation of China(51991343,51920105002,and 52102179)+4 种基金Guangdong Basic and Applied Basic Research Foundation(2023A1515011752)Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341)Shenzhen Basic Research Project(JCYJ20200109144616617,JCYJ20220818101014029)Shuimu Tsinghua Scholar Program(2022SM092)China Postdoctoral Science Foundation(2021M691715)。
文摘Non-layered two-dimensional(2D)materials have sparked much interest recently due to their atomic thickness,large surface area,thickness-and facet-dependent properties.Currently,these materials are mainly grown from wet-chemistry methods but suffer from small size,low quality,and multi-facets,which is a major challenge hindering their facet-dependent property studies and applications.Here,we report the facet-engineered growth(FEG)of non-layered 2D manganese chalcogenides(MnX,X=S,Se,Te)based on the chemical vapor deposition method.The as-grown samples exhibit large-area surfaces of single facet,high-crystallinity,and ordered domain orientation.As a proof-of-concept,we show the facet-dependent electrocatalytic property of non-layered 2D MnSe,proving they are ideal candidates for fundamental research.Furthermore,we elucidate the underlying mechanism of FEG during the vapor growth process by the interfacial energy derived nucleation models.The method developed in this work provides new opportunities for regulating and designing the structure of 2D materials.
基金supported by the Program of Marine Economy Development Special Fund under Department of Natural Resources of Guangdong Province(Grant No.GDNRC[2023]23)the National Natural Science Foundation of China(Grant Nos.62005098 and 61935013)+1 种基金the General Items of Guangzhou Science and Technology Plan Project(PhD Young Scientists and Technologists category)(Grant No.202201010320)the Fundamental Research Funds for the Central University(Grant No.11623415).
文摘Dynamically tunable metasurfaces employing chalcogenide phase-change materials(PCMs)such as Ge_(2)Sb_(2)Te_(5)alloys have garnered significant attention and research efforts.However,the utilization of chalcogenide PCMs in dynamic metasurface devices necessitates protection,owing to their susceptibility to volatilization and oxidation.Conventional protective layer materials such as Al_(2)O_(3),TiO_(2),and SiO_(2)present potential drawbacks including diffusion,oxidation,or thermal expansion coefficient mismatch with chalcogenide PCMs during high-temperature phase transition,severely limiting the durability of chalcogenide PCM-based devices.In this paper,we propose,for the first time to our knowledge,the utilization of chalcogenide glass characterized by high thermal stability as a protective material for chalcogenide PCM.This approach addresses the durability challenge of current dynamic photonic devices based on chalcogenide PCM by virtue of their closely matched optical and thermal properties.Building upon this innovation,we introduce an all-chalcogenide dynamic tunable metasurface filter and comprehensively simulate and analyze its characteristics.This pioneering work paves the way for the design and practical implementation of optically dynamically tunable metasurface devices leveraging chalcogenide PCMs,ushering in new opportunities in the field.
基金supported by the National Key Research and Devel-opment Program of China(no.2022YFB2502000)the National Natural Science Foundation of China(no.U21A2033251771076)+1 种基金Guangdong Basic and Applied Basic Research Foundation(nos.2020B1515120049,2021A1515010332 and 2021A1515010153)R&D Program in Key Areas of Guangdong Province(no.2020B0101030005).
文摘Lithium-ion batteries(LIBs)gradually occupied the energy storage market due to their long cycling life;high working voltage;as well as energy density.However;LIBs have high costs due to the limited lithium resource and difficulty to exploit.Potassium ion batteries(PIBs)have aroused extensive attention over the past few years since they possess considerable potassium salt resources while exhibiting similar electrochemical properties to LIBs.The electrode material takes on great significance in determining the properties exhibited by the batteries.Zinc-based chalcogenides have served as the most suitable anode materials for their numerous raw material resources;low prices;and environmental friendliness.Nevertheless;the application of Zinc-based chalcogenides has been continuously hindered by sluggish diffusion kinetics;low electrical conductivity;as well as huge volume vari-ation.Several effective strategies have been explored to settle the above matters(e.g.;designing nanostructures;constructing carbon composite structures;as well as doping anions or cations to construct heterojunction).In this review;the recent advance of zinc-based chalcogenides(e.g.;electrochemical mechanisms;challenges;and perspectives)are summarized.This review can provide novel insights into the development of transition metal chalcogenides for PIBs.
基金supported by National Natural Science Foundation of China (61861136004)the National Key R&D Program of China (2016YFB0402705)+1 种基金the Innovation Fund of WNLOProgram for HUST Academic Frontier Youth Team (2018QYTD06)
文摘Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring.By attaching to the skin surface,these sensors are closely related to body signals(such as heart rate,blood oxygen saturation,breath markers,etc.)and ambient signals(such as ultraviolet radiation,inflammable and explosive,toxic and harmful gases),thus providing new opportunities for human activity monitoring and personal telemedicine care.Here we focus on photodetectors and gas sensors built from metal chalcogenide,which have made great progress in recent years.Firstly,we present an overview of healthcare applications based on photodetectors and gas sensors,and discuss the requirement associated with these applications in detail.We then discuss advantages and properties of solution-processable metal chalcogenides,followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides.Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare.
基金Financial supports from the National Natural Science Foundation of China (Grant No. 21573240)Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences (Grant No. COM2015A001 and MPCS-2017-A-02)
文摘Intense efforts have been devoted to the synthesis of heterogeneous nanocomposites consisting of chalcogenide semiconductors and noble metals,which usually exhibit enhanced properties owing to the synergistic effect between their different material domains.Tailoring the structure of the metal domains in the nanocomposites may lead to further improvements of its performance for a given application.This review therefore highlights the strategies based on a structural conversion process for the fabrication of nanocomposites consisting of chalcogenide semiconductors and noble metals with various internal structures,e.g.,hollow or cage-bell.This strategy relies on a unique inside-out diffusion phenomenon of Ag in core-shell nanoparticles with Ag residing at core or inner shell region.In the presence of sulfur or selenium precursors,the diffused Ag are converted into Ag2S or Ag2Se,which is connected with the remaining noble metal parts,forming nanocomposites consisting of silver chalcogenide and noble metal nanoparticles with hollow or cage-bell structures.We would focus on the introduction of the fundamentals,principles,electrocatalytic applications as well as perspectives of the chalcogenide semiconductor-noble metal nanocomposites derived from their core-shell precursors so as to provide the readers insights in designing efficient nanocomposites for electrocatalysis.
基金supported by the China’s Manned Space Program (921-21 Project)
文摘Dy^3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 nm, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy^3+ ions. The longest lifetime was over 2.5 ms, and the value was significantly higher than that in other Dy^3+-doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy^3+-doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.
基金support from the National Natural Science Foundation of China(nos.51722207 and 51372131)973 Program of China(nos.2015CB932500 and 2014CB932401)+2 种基金Beijing Nova Program(no.Z161100004916099)the International Collaboration Project of Tsinghua University Initiative Scientific Research Program(no.20173080001)Chinese Postdoctoral Science Foundation(no.2015M570092)
文摘Developing high-performance noble metal-free and free-standing catalytic electrodes are crucial for overall water splitting. Here, nickel sulfide(NiS) and nickel selenide(Ni Se) are synthesized on nickel foam(NF) with a one-pot solvothermal method and directly used as free-standing electrodes for efficiently catalyzing hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline solution.In virtue of abundant active sites, the NiS/NF and the NiS e/NF electrodes can deliver a current density of 10 m A cmat only 123 m V, 137 m V for HER and 222 m V, 271 m V for OER. Both of the hierarchical NiS/NF and Ni Se/NF electrodes can serve as anodes and cathodes in electrocatalytic overall watersplitting and can achieve a current density of 10 m A cmwith an applied voltage of.59 V and 1.69 V,respectively. The performance of as-obtained NiS/NF||NiS/NF is even close to that of the noble metalbased Pt/C/NF||IrO/NF system.
基金Project supported by the National Key Research and Development Program,China(Grant Nos.2016YFB0401702 and 2017YFE0120400)the National Natural Science Foundation of China(Grant Nos.61875082 and 61405089)+6 种基金the Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.2017KSYS007)the Natural Science Foundation of Guangdong,China(Grant No.2017B030306010)the Guangdong Province’s 2018–2019 Key R&D Program:Environmentally Friendly Quantum Dots Luminescent Materials,China(Grant No.2019B010924001)the Shenzhen Innovation Project,China(Grant Nos.JCYJ20160301113356947 and JSGG20170823160757004)the Shenzhen Peacock Team Project,China(Grant No.KQTD2016030111203005)the Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.ZDSYS201707281632549)the Tianjin New Materials Science and Technology Key Project,China(Grant No.16ZXCLGX00040)
文摘This paper reviews the recent progress in the synthesis of near-infrared(NIR) lead chalcogenide(PbX;PbX = PbS,PbSe, PbTe) quantum dots(QDs) and their applications in NIR QDs based light emitting diodes(NIR-QLEDs). It summarizes the strategies of how to synthesize high efficiency PbX QDs and how to realize high performance Pb X based NIR-QLEDs.
基金supported by the Characterization platform for advanced materials funded by the Korea Research Institute of Standards and Science(KRISS-2021-GP2021-0011)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government MSIT(2021M3D1A20396541).
文摘Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.
基金Project supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.665778(National Science Centre,Poland,Polonez Fellowship 2016/21/P/ST7/03666)
文摘A numerical model was developed to study the time dynamics of photo luminescence emitted by Tb^3+doped multimode chalcogenide-selenide glass fibers pumped by laser light at approximately 2μm.The model consists of a set of partial differential equations(PDEs),which describe the temporal and spatial evolution of the photon density and level populations within the fiber.In order to solve numerically the PDEs a method of lines was applied.The modeling parameters were extracted from measurements and from data available in the literature.The numerical results obtained support experimental observations.In particular,the developed model reproduces the discrepancies that are observed between the photoluminescence decay curves obtained from different points along the fiber.The numerical analysis was also used to explain the source of these discrepancies.