期刊文献+
共找到86,825篇文章
< 1 2 250 >
每页显示 20 50 100
GTS12与GTS1探空仪平行观测数据对比分析和评估
1
作者 杨国彬 郭启云 +3 位作者 夏元彩 蒋锐 舒康宁 周明刚 《气象》 北大核心 2025年第5期552-565,共14页
基于全国89个高空气象观测站GTS12与GTS1探空仪的平行观测数据和CMA-GFS模式预报场数据对两种探空仪各标准等压面上的观测数据进行对比分析和评估。结果表明:两种探空仪温度和位势高度偏差绝对值除个别等压面外分别小于0.5℃和30.0gpm,... 基于全国89个高空气象观测站GTS12与GTS1探空仪的平行观测数据和CMA-GFS模式预报场数据对两种探空仪各标准等压面上的观测数据进行对比分析和评估。结果表明:两种探空仪温度和位势高度偏差绝对值除个别等压面外分别小于0.5℃和30.0gpm,表明两种探空仪测得的温度和位势高度一致性较好,而GTS12探空仪测得的相对湿度较GTS1探空仪平均偏大约4.6%;对于观测数据稳定性,在中低层等压面两种探空仪差异不大,在高层GTS12探空仪的温度和位势高度明显优于GTS1探空仪,但相对湿度略差于GTS1探空仪。GTS12探空仪和GTS1探空仪观测数据相对于模式数据,温度偏差绝对平均值分别约为0.34℃和0.44℃,平均均方根误差分别约为1.23℃和1.31℃,平均相关系数分别约为0.908和0.916;位势高度对应分别为11.05gpm和14.97gpm,18.76gpm和25.16gpm,0.948和0.934;相对湿度对应分别为5.26%和8.59%,16.19%和18.44%,0.687和0.627,表明GTS12探空仪观测数据与模式数据一致性优于GTS1探空仪。GTS12探空仪传感器技术的改进有效提升了探空仪的整体观测性能。 展开更多
关键词 gts12探空仪 gts1探空仪 平行观测数据 对比分析 评估
在线阅读 下载PDF
基于MIDAS GTS NX的采空区废石充填稳定性研究
2
作者 李宗利 吴功勇 +4 位作者 聂兴信 张鑫 赵林海 阮顺玲 江松 《黄金》 2025年第2期23-29,共7页
地下矿采空区的恢复和治理对矿区及周边环境有重要影响。以某金属矿地下采空区为研究对象,基于MIDAS GTS NX软件进行数值模拟,对该区域分步开采及充填过程、采空区废石充填后上覆岩层的稳定性进行分析,同时对该区域实施废石充填+胶结充... 地下矿采空区的恢复和治理对矿区及周边环境有重要影响。以某金属矿地下采空区为研究对象,基于MIDAS GTS NX软件进行数值模拟,对该区域分步开采及充填过程、采空区废石充填后上覆岩层的稳定性进行分析,同时对该区域实施废石充填+胶结充填接顶后采空区安全稳定及地表河流的影响情况进行研究。研究结果表明,对采空区实施废石充填+胶结充填接顶可有效减缓围岩应力,保障地表河床的稳定性,显著提升采空区结构稳定性,使整体处于安全水平。 展开更多
关键词 采空区 充填采矿法 MIDAS gts NX软件 数值模拟 废石充填 稳定性
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
3
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
基于MIDAS/GTS的某矿区地表建(构)筑物稳定性模拟分析
4
作者 闫昊 苗向彪 +2 位作者 喻六平 赵运涛 孙波 《现代矿业》 2025年第1期54-56,61,共4页
为确定某矿区地表工业场地的安全稳定性,将MIDAS/GTS软件建立的矿区工程地质三维模型导入到有限元分析软件中,并结合矿山开采现状及特点,模拟分析各中段矿体开挖后对地表工业场地的影响。数值模拟计算结果表明:地表工业场地建(构)筑物... 为确定某矿区地表工业场地的安全稳定性,将MIDAS/GTS软件建立的矿区工程地质三维模型导入到有限元分析软件中,并结合矿山开采现状及特点,模拟分析各中段矿体开挖后对地表工业场地的影响。数值模拟计算结果表明:地表工业场地建(构)筑物的最大倾斜率为0.023 mm/m,最大曲率为0.0008×10^(-3)m^(-1),最大水平变形为0.016mm/m,都远小于设计规范Ⅰ级保护对象允许的倾斜变形(3 mm/m)、曲率(0.2×10^(-3) m^(-1))和水平变形值(2 mm/m),开采不会给矿山地表建(构)筑物的安全造成影响,对相似矿山具有一定借鉴意义。 展开更多
关键词 地表建(构)筑物 数值模拟 MIDAS/gts软件 稳定性分析
在线阅读 下载PDF
基于GTS对引孔灌土锤击沉桩承载力的数值分析 被引量:1
5
作者 方明 林惠庭 +2 位作者 唐俊 邝悦峰 何余钧 《广州建筑》 2025年第2期24-28,共5页
本文采用有限元GTS软件对采用引孔灌土锤击工艺沉桩的单桩极限承载力静载荷试验进行模拟分析;该方法采用摩尔-库伦模型确定土体本构关系,在桩土之间设置桩界面单元,结合珠海市斗门区某工程实例,通过Midas GTS有限元分析软件建立有限元模... 本文采用有限元GTS软件对采用引孔灌土锤击工艺沉桩的单桩极限承载力静载荷试验进行模拟分析;该方法采用摩尔-库伦模型确定土体本构关系,在桩土之间设置桩界面单元,结合珠海市斗门区某工程实例,通过Midas GTS有限元分析软件建立有限元模型,将单桩静载模拟结果与实际静载试验结果进行了对比。结果表明,通过正确地设置桩土参数,数值模拟分析得出的Q-s曲线与实测Q-s曲线趋势一致,数值相近,且软弱土层深度范围内桩侧摩阻力很小,与实际桩侧摩阻力分布情况相符,说明模拟结果有效,并根据相关规范取拟合的Q-s曲线s=40 mm所对应的荷载值作为单桩极限承载力,计算出本项目工程地质条件下工程桩的单桩极限承载力为6452 kN。本文为无静载试验数据情况下确定引孔灌土锤击管桩竖向抗压承载力提供一个参考依据。 展开更多
关键词 gts 有限元 引孔灌土锤击沉桩 竖向抗压承载力 摩尔-库伦模型
在线阅读 下载PDF
Brain age estimation:premise,promise,and problems
6
作者 Jarrad Perron Ji Hyun Ko 《Neural Regeneration Research》 SCIE CAS 2025年第8期2313-2314,共2页
Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,Sou... Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders. 展开更多
关键词 estimation providing BIRTH
暂未订购
基于MIDAS GTS的紧邻地铁车站出入口基坑开挖影响分析 被引量:1
7
作者 刘凡来 《交通世界》 2025年第15期11-13,共3页
为保证基坑紧邻地铁车站出入口建设时的安全性,结合工程实例,采用MIDAS GTS有限元设计软件对该基坑施工方案进行模拟,分析基坑开挖对地铁出入口的影响,并将模拟数据与现场施工监测数据进行对比。结果表明,数据基本吻合,该模拟分析方案... 为保证基坑紧邻地铁车站出入口建设时的安全性,结合工程实例,采用MIDAS GTS有限元设计软件对该基坑施工方案进行模拟,分析基坑开挖对地铁出入口的影响,并将模拟数据与现场施工监测数据进行对比。结果表明,数据基本吻合,该模拟分析方案能够满足基坑与地铁出入口的安全影响分析要求,可为此类工程提供参考。 展开更多
关键词 地铁车站出入口 基坑开挖 MIDAS gts 变形分析
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
8
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:1
9
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
基于Midas/GTS不同工况下结合的滑坡稳定性比较分析
10
作者 张龙 李凯 《粘接》 2025年第3期158-161,共4页
某边坡位于村民居住区,由三处独立老滑坡组成(编号分别为HP1、HP2、HP3)。为评价边坡的稳定性及为设计提供参数与完整地质资料,本研究基于Midas/GTS软件结合岩土体物理力学参数,选取HP1原始坡面和各工况建立边坡二、三维计算模型,通过... 某边坡位于村民居住区,由三处独立老滑坡组成(编号分别为HP1、HP2、HP3)。为评价边坡的稳定性及为设计提供参数与完整地质资料,本研究基于Midas/GTS软件结合岩土体物理力学参数,选取HP1原始坡面和各工况建立边坡二、三维计算模型,通过该软件对不同工况下的滑坡进行定量分析,以期能够对滑坡的稳定性及防护措施做出评价,为该滑坡工程采取合理防护措施提供理论依据。 展开更多
关键词 Midas/gts 计算模型 稳定性分析
在线阅读 下载PDF
Improving DOA estimation of GNSS interference through sparse non-uniform array reconfiguration 被引量:1
11
作者 Rongling LANG Hao XU +3 位作者 Fei GAO Zewen TANG Zhipeng WANG Amir HUSSAIN 《Chinese Journal of Aeronautics》 2025年第8期104-118,共15页
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa... Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation. 展开更多
关键词 GNSS interference location Direction of arrival estimation Adaptive reconfigurable array Cramér-Raobound Quadratic fractional programming
原文传递
基于改进GTS模型的数学应用题自动求解研究
12
作者 孟凡聪 《佳木斯大学学报(自然科学版)》 2025年第9期38-41,37,共5页
研究针对数学应用题求解效率低、难以满足个性化需求的问题,提出一种基于改进目标驱动网络模型的自动求解算法。方法包括预处理部分的双向长短时记忆网络序列编码器,结合分词、数字识别和语言预训练模型词嵌入;以及求解表达部分的群注... 研究针对数学应用题求解效率低、难以满足个性化需求的问题,提出一种基于改进目标驱动网络模型的自动求解算法。方法包括预处理部分的双向长短时记忆网络序列编码器,结合分词、数字识别和语言预训练模型词嵌入;以及求解表达部分的群注意力模块和树结构解码器。实验表明,优化训练后的模型准确度显著提升,如在通用数据集上从75.6%提升至86.4%;而在不同规模数据解题中平均准确度为94.8%,表现最好。可见,研究技术具有良好应用效果,研究将为教育领域信息化发展提供技术支持。 展开更多
关键词 数学应用题 自动求解 gts模型 预处理 群注意力
在线阅读 下载PDF
Hourglass-GCN for 3D Human Pose Estimation Using Skeleton Structure and View Correlation
13
作者 Ange Chen Chengdong Wu Chuanjiang Leng 《Computers, Materials & Continua》 SCIE EI 2025年第1期173-191,共19页
Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton s... Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton structure information is not utilized and multi-view pose information is not completely fused.Moreover,existing graph convolutional operations do not consider the specificity of different joints and different views of pose information when processing skeleton graphs,making the correlation weights between nodes in the graph and their neighborhood nodes shared.Existing Graph Convolutional Networks(GCNs)cannot extract global and deeplevel skeleton structure information and view correlations efficiently.To solve these problems,pre-estimated multiview 2D poses are designed as a multi-view skeleton graph to fuse skeleton priors and view correlations explicitly to process occlusion problem,with the skeleton-edge and symmetry-edge representing the structure correlations between adjacent joints in each viewof skeleton graph and the view-edge representing the view correlations between the same joints in different views.To make graph convolution operation mine elaborate and sufficient skeleton structure information and view correlations,different correlation weights are assigned to different categories of neighborhood nodes and further assigned to each node in the graph.Based on the graph convolution operation proposed above,a Residual Graph Convolution(RGC)module is designed as the basic module to be combined with the simplified Hourglass architecture to construct the Hourglass-GCN as our 3D pose estimation network.Hourglass-GCNwith a symmetrical and concise architecture processes three scales ofmulti-viewskeleton graphs to extract local-to-global scale and shallow-to-deep level skeleton features efficiently.Experimental results on common large 3D pose dataset Human3.6M and MPI-INF-3DHP show that Hourglass-GCN outperforms some excellent methods in 3D pose estimation accuracy. 展开更多
关键词 3D human pose estimation multi-view skeleton graph elaborate graph convolution operation Hourglass-GCN
在线阅读 下载PDF
基于Midas GTS NX的辽阳葠窝水库挡水坝段锚索设计
14
作者 杜亚进 《水利水电快报》 2025年第4期66-70,共5页
为进一步优化辽阳葠窝水库除险加固工程挡水坝段锚索设计方案,通过使用Midas GTS NX软件对该工程23号挡水坝段原坝体、坝体施工缝和纵缝、锚索及下游新浇筑坝面混凝土进行组合建模,分析在正常、设计及校核水位下,施加预应力锚索对坝体... 为进一步优化辽阳葠窝水库除险加固工程挡水坝段锚索设计方案,通过使用Midas GTS NX软件对该工程23号挡水坝段原坝体、坝体施工缝和纵缝、锚索及下游新浇筑坝面混凝土进行组合建模,分析在正常、设计及校核水位下,施加预应力锚索对坝体内应力分布情况的影响。结果表明:锚索使上游坝面的压应力增大约10%,对下游面的应力及坝体内应力改变几乎没有影响。研究成果有效解决了坝踵拉应力问题,对同类型工程具有一定的借鉴意义。 展开更多
关键词 水库除险加固 挡水坝段 锚索 Midas gts NX
在线阅读 下载PDF
基于MIDAS GTS/NX的泵闸工程深基坑开挖有限元分析
15
作者 金少格 《水利水电快报》 2025年第9期55-60,共6页
为确保复杂施工环境下泵闸工程深基坑开挖方案的合理性和科学性,运用MIDAS GTS/NX二维数值模拟分析基坑开挖过程中的变形及其对围护结构的影响,并与技术规范值及区域工程经验值进行对比分析。结果表明:基坑设计方案采用的水泥土重力式... 为确保复杂施工环境下泵闸工程深基坑开挖方案的合理性和科学性,运用MIDAS GTS/NX二维数值模拟分析基坑开挖过程中的变形及其对围护结构的影响,并与技术规范值及区域工程经验值进行对比分析。结果表明:基坑设计方案采用的水泥土重力式围护墙满足工程要求,最大水平位移发生在围护体顶部;最大地表沉降值为11.5 mm,发生在距离基坑边线11 m处,然后逐渐减小;受到大面积卸载及地面荷载因素影响,桩间土隆起值较大,最大达到45.9 mm。研究成果可为类似工况下的泵闸工程基坑设计提供参考。 展开更多
关键词 深基坑 开挖 支护结构 变形 MIDAS gts/NX 盐铁塘泵闸工程
在线阅读 下载PDF
Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks
16
作者 Khalil Ullah Song Jian +4 位作者 Muhammad Naeem Ul Hassan Suliman Khan Mohammad Babar Arshad Ahmad Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1151-1169,共19页
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user... The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques. 展开更多
关键词 Next generation networks massive mimo communication network artificial intelligence 5G adversarial attacks channel estimation information security
在线阅读 下载PDF
Sensitivity-based state and parameter moving horizon estimation method for liquid propellant rocket engine
17
作者 Zizhao WANG Dan WANG +2 位作者 Hongyu CHEN Zhijiang SHAO Zhengyu SONG 《Chinese Journal of Aeronautics》 2025年第7期46-60,共15页
The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar... The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods. 展开更多
关键词 Sensitivity Moving horizon estimation Noise covariance estimation Parameter estimation Liquid propellant rocket engine
原文传递
Reliability Performance Estimation and Its Applications of Rate-Compatible Polar Codes for B5G-IoT
18
作者 Liang Hao Liang Xiaohu +2 位作者 Ye Ganhua Lu Ruimin Lu Xinjin 《China Communications》 2025年第7期124-137,共14页
The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction perform... The beyond fifth-generation Internet of Things requires more capable channel coding schemes to achieve high-reliability,low-complexity and lowlatency communications.The theoretical analysis of error-correction performance of channel coding functions as a significant way of optimizing the transmission reliability and efficiency.In this paper,the efficient estimation methods of the block error rate(BLER)performance for rate-compatible polar codes(RCPC)are proposed under several scenarios.Firstly,the BLER performance of RCPC is generally evaluated in the additive white Gaussian noise channels.That is further extended into the Rayleigh fading channel case using an equivalent estimation method.Moreover,with respect to the powerful decoder such as successive cancellation list decoding,the performance estimation is derived analytically based on the polar weight spectrum and BLER upper bounds.Theoretical evaluation and numerical simulation results show that the estimated performance can fit well the practical simulated results of RCPC under the objective conditions,verifying the validity of our proposed performance estimation methods.Furthermore,the application designs of the reliability estimation of RCPC are explored,particularly in the advantages of the signal-to-noise(SNR)estimation and throughput efficiency optimization of polar coded hybrid automatic repeat request. 展开更多
关键词 Internet of Things polar codes ratecompatible reliability estimation SNR estimation throughput optimization
在线阅读 下载PDF
ELDE-Net:Efficient Light-Weight Depth Estimation Network for Deep Reinforcement Learning-Based Mobile Robot Path Planning
19
作者 Thai-Viet Dang Dinh-Manh-Cuong Tran +1 位作者 Nhu-Nghia Bui Phan Xuan Tan 《Computers, Materials & Continua》 2025年第11期2651-2680,共30页
Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional obje... Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional object detection(2DOD)frameworks to predict the three-dimensional bounding box(3DBB)of objects captured in 2D RGB images.However,these methods often require multiple images,making them less feasible for various real-time scenarios.To address these challenges,the emergence of agile convolutional neural networks(CNNs)capable of inferring depth froma single image opens a new avenue for investigation.The paper proposes a novel ELDENet network designed to produce cost-effective 3DBounding Box Estimation(3D-BBE)froma single image.This novel framework comprises the PP-LCNet as the encoder and a fast convolutional decoder.Additionally,this integration includes a Squeeze-Exploit(SE)module utilizing the Math Kernel Library for Deep Neural Networks(MKLDNN)optimizer to enhance convolutional efficiency and streamline model size during effective training.Meanwhile,the proposed multi-scale sub-pixel decoder generates high-quality depth maps while maintaining a compact structure.Furthermore,the generated depthmaps provide a clear perspective with distance details of objects in the environment.These depth insights are combined with 2DOD for precise evaluation of 3D Bounding Boxes(3DBB),facilitating scene understanding and optimal route planning for mobile robots.Based on the estimated object center of the 3DBB,the Deep Reinforcement Learning(DRL)-based obstacle avoidance strategy for MRs is developed.Experimental results demonstrate that our model achieves state-of-the-art performance across three datasets:NYU-V2,KITTI,and Cityscapes.Overall,this framework shows significant potential for adaptation in intelligent mechatronic systems,particularly in developing knowledge-driven systems for mobile robot navigation. 展开更多
关键词 3D bounding box estimation depth estimation mobile robot navigation monocular camera object detection
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部