Reactive oxygen species(ROS)and nitric oxide(NO)are two critical classes of signaling molecules that regulate plant development and stress responses.The intracellular level of S-nitrosoglutathione(GSNO),a major bioact...Reactive oxygen species(ROS)and nitric oxide(NO)are two critical classes of signaling molecules that regulate plant development and stress responses.The intracellular level of S-nitrosoglutathione(GSNO),a major bioactive NO species,is regulated by the highly conserved GSNO reductase(GSNOR).However,the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear.Here,we show that H_(2)O_(2)negatively regulates the activity of GSNOR1 during ovule development in Arabidopsis.S-sulfenylation of GSNOR1 at Cys-284 inhibits its enzymatic activity.A GSNOR1C284S mutation causes a reduction of the total SNO level in pistils,thereby disrupting NO homeostasis and eventually leading to defective ovule development.These findings illustrate a unique mechanism by which ROS regulates ovule development through S-sulfenylation-mediated inhibition of the GSNOR activity,thereby establishing a molecular link between ROS and NO signaling pathways in reproductive development.展开更多
Metabolism of S-nitrosoglutathione (GSNO), a major biologically active nitric oxide (NO) species, is catalyzed by the evolutionally conserved GSNO reductase (GSNOR). Previous studies showed that the Arabidopsis ...Metabolism of S-nitrosoglutathione (GSNO), a major biologically active nitric oxide (NO) species, is catalyzed by the evolutionally conserved GSNO reductase (GSNOR). Previous studies showed that the Arabidopsis GSNOR1/ HOT5 gene regulates salicylic acid signaling and thermotolerance by modulating the intracellular S-nitrosothiol level. Here, we report the characterization of the Arabidopsisparaquat resistant2-1 (par2-1) mutant that shows an anti-cell death phenotype. The production of superoxide in par2-1 is comparable to that of wild-type plants when treated by paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride), suggesting that PAR2 acts downstream of superoxide to regulate cell death. PAR2, identified by positional cloning, is shown to be identical to GSNOR1/HOT5. The par2-1 mutant carries a missense mutation in a highly conserved glycine, which renders the mutant protein unstable. Compared to wild type, par2-1 mutant has a higher NO level, as revealed by staining with 4,5-diaminofluorescein diacetate. Consistent with this result, wild-type plants treated with an NO donor display resistance to paraquat. Interestingly, the GSNOR1/HOT5/PAR2 protein level, other than its steady-state mRNA level, is induced by paraquat, but is reduced by NO donors. Taken together, these results suggest that GSNOR1/HOT5/PAR2 plays an important role in regulating cell death in plant cells through modulating intracellular NO level.展开更多
Seed germination or dormancy status is strictly controlled by endogenous phytohormone and exogenous environment signals.Abscisic acid(ABA)is the important phytohormone to suppress seed germination.Ambient high tempera...Seed germination or dormancy status is strictly controlled by endogenous phytohormone and exogenous environment signals.Abscisic acid(ABA)is the important phytohormone to suppress seed germination.Ambient high temperature(HT)also suppressed seed germination,or called as secondary seed dormancy,through upregulating ABI5,the essential component of ABA signal pathway.Previous result shows that appropriate nitric oxide(NO)breaks seed dormancy through triggering S-nitrosoglutathion reductase(GSNOR1)-dependent S-nitrosylation modification of ABI5 protein,subsequently inducing the degradation of ABI5.Here we found that HT induced the degradation of GSNOR1 protein and reduced its activity,thus accumulated more reactive nitrogen species(RNS)to damage seeds viability.Furthermore,HT increased the S-nitrosylation modification of GSNOR1 protein,and triggered the degradation of GSNOR1,therefore stabilizing ABI5 to suppress seed germination.Consistently,the ABI5 protein abundance was lower in the transgenic line overexpressing GSNOR1,but higher in the gsnor mutant after HT stress.Genetic analysis showed that GSNOR1 affected seeds germination through ABI5 under HT.Taken together,our data reveals a new mechanism by which HT triggers the degradation of GSNOR1,and thus stabilizing ABI5 to suppress seed germination,such mechanism provides the possibility to enhance seed germination tolerance to HT through genetic modification of GNSOR1.展开更多
基金supported by grants from the National Natural Science Foundation of China(32170312,31830017,and 32200256)State Key Laboratory of Plant Genomics(SKLPG2023-22).
文摘Reactive oxygen species(ROS)and nitric oxide(NO)are two critical classes of signaling molecules that regulate plant development and stress responses.The intracellular level of S-nitrosoglutathione(GSNO),a major bioactive NO species,is regulated by the highly conserved GSNO reductase(GSNOR).However,the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear.Here,we show that H_(2)O_(2)negatively regulates the activity of GSNOR1 during ovule development in Arabidopsis.S-sulfenylation of GSNOR1 at Cys-284 inhibits its enzymatic activity.A GSNOR1C284S mutation causes a reduction of the total SNO level in pistils,thereby disrupting NO homeostasis and eventually leading to defective ovule development.These findings illustrate a unique mechanism by which ROS regulates ovule development through S-sulfenylation-mediated inhibition of the GSNOR activity,thereby establishing a molecular link between ROS and NO signaling pathways in reproductive development.
基金We thank Dr Gary Loake (University of Edinburgh, UK) for providing gsnor1-3 seeds. We are grateful to Drs Chuanyou Li, Shuhua Yang and Yiqin Wang for critically reading the manuscript. This study was supported by grants from the National Natural Science Foundation of China (30330360), the Ministry of Science and Technology of China (2006AA 10A 112) and the Chinese Academy of Sciences (KSCX2-YW-N-015).
文摘Metabolism of S-nitrosoglutathione (GSNO), a major biologically active nitric oxide (NO) species, is catalyzed by the evolutionally conserved GSNO reductase (GSNOR). Previous studies showed that the Arabidopsis GSNOR1/ HOT5 gene regulates salicylic acid signaling and thermotolerance by modulating the intracellular S-nitrosothiol level. Here, we report the characterization of the Arabidopsisparaquat resistant2-1 (par2-1) mutant that shows an anti-cell death phenotype. The production of superoxide in par2-1 is comparable to that of wild-type plants when treated by paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride), suggesting that PAR2 acts downstream of superoxide to regulate cell death. PAR2, identified by positional cloning, is shown to be identical to GSNOR1/HOT5. The par2-1 mutant carries a missense mutation in a highly conserved glycine, which renders the mutant protein unstable. Compared to wild type, par2-1 mutant has a higher NO level, as revealed by staining with 4,5-diaminofluorescein diacetate. Consistent with this result, wild-type plants treated with an NO donor display resistance to paraquat. Interestingly, the GSNOR1/HOT5/PAR2 protein level, other than its steady-state mRNA level, is induced by paraquat, but is reduced by NO donors. Taken together, these results suggest that GSNOR1/HOT5/PAR2 plays an important role in regulating cell death in plant cells through modulating intracellular NO level.
基金funded by the National Natural Science Foundation of China(Grants No.31970289).
文摘Seed germination or dormancy status is strictly controlled by endogenous phytohormone and exogenous environment signals.Abscisic acid(ABA)is the important phytohormone to suppress seed germination.Ambient high temperature(HT)also suppressed seed germination,or called as secondary seed dormancy,through upregulating ABI5,the essential component of ABA signal pathway.Previous result shows that appropriate nitric oxide(NO)breaks seed dormancy through triggering S-nitrosoglutathion reductase(GSNOR1)-dependent S-nitrosylation modification of ABI5 protein,subsequently inducing the degradation of ABI5.Here we found that HT induced the degradation of GSNOR1 protein and reduced its activity,thus accumulated more reactive nitrogen species(RNS)to damage seeds viability.Furthermore,HT increased the S-nitrosylation modification of GSNOR1 protein,and triggered the degradation of GSNOR1,therefore stabilizing ABI5 to suppress seed germination.Consistently,the ABI5 protein abundance was lower in the transgenic line overexpressing GSNOR1,but higher in the gsnor mutant after HT stress.Genetic analysis showed that GSNOR1 affected seeds germination through ABI5 under HT.Taken together,our data reveals a new mechanism by which HT triggers the degradation of GSNOR1,and thus stabilizing ABI5 to suppress seed germination,such mechanism provides the possibility to enhance seed germination tolerance to HT through genetic modification of GNSOR1.