期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
GSFM: A genome-scale functional module transformation to represent drug efficacy for in silico drug discovery
1
作者 Saisai Tian Xuyang Liao +7 位作者 Wen Cao Xinyi Wu Zexi Chen Jinyuan Lu Qun Wang Jinbo Zhang Luonan Chen Weidong Zhang 《Acta Pharmaceutica Sinica B》 2025年第1期133-150,共18页
Pharmacotranscriptomic profiles,which capture drug-induced changes in gene expression,offer vast potential for computational drug discovery and are widely used in modern medicine.However,current computational approach... Pharmacotranscriptomic profiles,which capture drug-induced changes in gene expression,offer vast potential for computational drug discovery and are widely used in modern medicine.However,current computational approaches neglected the associations within gene‒gene functional networks and unrevealed the systematic relationship between drug efficacy and the reversal effect.Here,we developed a new genome-scale functional module(GSFM)transformation framework to quantitatively evaluate drug efficacy for in silico drug discovery.GSFM employs four biologically interpretable quantifiers:GSFM_Up,GSFM_Down,GSFM_ssGSEA,and GSFM_TF to comprehensively evaluate the multidimension activities of each functional module(FM)at gene-level,pathway-level,and transcriptional regulatory network-level.Through a data transformation strategy,GSFM effectively converts noisy and potentially unreliable gene expression data into a more dependable FM active matrix,significantly outperforming other methods in terms of both robustness and accuracy.Besides,we found a positive correlation between RSGSFM and drug efficacy,suggesting that RSGSFM could serve as representative measure of drug efficacy.Furthermore,we identified WYE-354,perhexiline,and NTNCB as candidate therapeutic agents for the treatment of breast-invasive carcinoma,lung adenocarcinoma,and castration-resistant prostate cancer,respectively.The results from in vitro and in vivo experiments have validated that all identified compounds exhibit potent anti-tumor effects,providing proof-of-concept for our computational approach. 展开更多
关键词 gsfm Data transformation strategy Multi-dimensions activities Drug efficacy In silico drug discovery
原文传递
基于人工萤火虫的模糊聚类算法研究 被引量:6
2
作者 骆东松 李雄伟 赵小强 《工业仪表与自动化装置》 2013年第2期3-6,共4页
模糊C-均值(FCM)聚类算法是数据挖掘中常用的方法之一,但往往受到初始聚类中心影响,收敛结果易陷入局部极小值的问题。该文提出了一种基于人工萤火虫(GSO)的模糊聚类算法(GSFM)。该算法引入了全局寻优能力强的人工萤火虫算法来求得最优... 模糊C-均值(FCM)聚类算法是数据挖掘中常用的方法之一,但往往受到初始聚类中心影响,收敛结果易陷入局部极小值的问题。该文提出了一种基于人工萤火虫(GSO)的模糊聚类算法(GSFM)。该算法引入了全局寻优能力强的人工萤火虫算法来求得最优解作为FCM算法的初始聚类中心,然后利用FCM算法优化初始聚类中心,最后求得全局最优解,从而有效克服了FCM算法的缺点。实验结果表明,新算法与FCM聚类算法相比,提高了算法的寻优能力,并且迭代次数更少,收敛速度更快,聚类效果更好。 展开更多
关键词 数据挖掘 模糊C-均值聚类 人工萤火虫算法 gsfm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部